Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 106(5-2): 055205, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559494

RESUMEN

The collisionless ion-Weibel instability is a leading candidate mechanism for the formation of collisionless shocks in many astrophysical systems, where the typical distance between particle collisions is much larger than the system size. Multiple laboratory experiments aimed at studying this process utilize laser-driven (I≳10^{15} W/cm^{2}), counterstreaming plasma flows (V≲2000 km/s) to create conditions unstable to Weibel-filamentation and growth. This technique intrinsically produces temporally varying plasma conditions at the midplane of the interaction where Weibel-driven B fields are generated and studied. Experiments discussed herein demonstrate robust formation of Weibel-driven B fields under multiple plasma conditions using CH, Al, and Cu plasmas. Linear theory based on benchmarked radiation-hydrodynamic FLASH calculations is compared with Fourier analyses of proton images taken ∼5-6 linear growth times into the evolution. The new analyses presented here indicate that the low-density, high-velocity plasma-conditions present during the first linear-growth time (∼300-500 ps) sets the spectral characteristics of Weibel filaments during the entire evolution. It is shown that the dominant wavelength (∼300µm) at saturation persists well into the nonlinear phase, consistent with theory under these experimental conditions. However, estimates of B-field strength, while difficult to determine accurately due to the path-integrated nature of proton imaging, are shown to be in the ∼10-30 T range, an order of magnitude above the expected saturation limit in homogenous plamas but consistent with enhanced B fields in the midplane due to temporally varying plasma conditions in experiments.

2.
Nat Commun ; 7: 13081, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713403

RESUMEN

The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.


Asunto(s)
Fenómenos Astronómicos , Campos Magnéticos , Modelos Teóricos , Gases em Plasma , Simulación por Computador , Rayos Láser
3.
Rev Sci Instrum ; 86(3): 033302, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25832218

RESUMEN

Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field "primitives" is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼10(8) particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm(3). Insights derived from this application show that the tool can support understanding of HED plasmas.

4.
Phys Rev Lett ; 111(23): 235003, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476281

RESUMEN

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇T(e)×∇n(e) Biermann battery effect near the periphery of the laser spots, are demonstrated to be "frozen in" the plasma (due to high magnetic Reynolds number Re(M)∼5×10(4)) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

5.
Rev Sci Instrum ; 83(10): 101301, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126744

RESUMEN

Proton imaging is commonly used to reveal the electric and magnetic fields that are found in high energy density plasmas. Presented here is an analysis of this technique that is directed towards developing additional insight into the underlying physics. This approach considers: formation of images in the limits of weak and strong intensity variations; caustic formation and structure; image inversion to obtain line-integrated field characteristics; direct relations between images and electric or magnetic field structures in a plasma; imaging of sharp features such as Debye sheaths and shocks. Limitations on spatial and temporal resolution are assessed, and similarities with optical shadowgraphy are noted. Synthetic proton images are presented to illustrate the analysis. These results will be useful for quantitatively analyzing experimental proton imaging data and verifying numerical codes.

6.
Nature ; 481(7382): 480-3, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22281596

RESUMEN

The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

7.
Phys Rev Lett ; 103(20): 201803, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-20365977

RESUMEN

The effect of the Proca photon mass m(ph) and cosmic vector potential A(C) on the dynamics of solar wind is considered. For large-enough values of the parameter A(C)m(ph)(2), the solar wind structure at a distance of approximately 40 AU from the Sun should change significantly with respect to the actual observed flow. The absence of such deviations gives an upper bound on the parameter A(C)m(ph)(2) 9 orders of magnitude less than in laboratory experiments measuring torque on a toroidal magnet.

8.
Phys Rev Lett ; 97(1): 015002, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16907381

RESUMEN

First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. An instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure, and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(5 Pt 2): 055401, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11414953

RESUMEN

Perturbation imprinting at a flat interface by a rippled shock has been observed in a laser hydrodynamics experiment. A strong shock was driven through a three-layer target, with the first interface rippled, and the second flat. The chosen thickness of the second layer gave instability growth with opposite phases at the two interfaces, consistent with two-dimensional simulations and rippled shock theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...