Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biophotonics ; : e202400294, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198025

RESUMEN

The fluorescence intensities of the cellular respiratory cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD++ (oxidized flavin adenine dinucleotide) reflect energy metabolism in skin and other tissues and can be quantified in vivo by fluorescence spectroscopy (FS). However, the variability of physiological parameters largely determines the reproducibility of measurement results and the reliability of the diagnostic test. In this prospective study, we evaluated the interday reproducibility of NADH and FAD++ fluorescence intensity measurements in the skin of 51 healthy volunteers assessed by the FS at baseline, after local cooling (10°C) and heating of the skin (35°C). Results showed that the fluorescence amplitude of NADH (AFNADH) in forearm skin was the most reproducible of the FS parameters studied. Assessment of AFNADH in the dorsal forearm in combination with a thermal functional test is the most promising method for clinical use for assessing energy metabolism in the skin.

2.
Microvasc Res ; 152: 104647, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38092223

RESUMEN

INTRODUCTION: Laser doppler flowmetry (LDF) allows non-invasive assessment of microvascular functions. The combination of LDF with an occlusion functional test enables study of post-occlusive reactive hyperemia (PORH), providing additional information about vasomotor function, capillary blood flow reserve, and the overall reactivity of the microvascular system. AIM: To identify early alterations of PORH variables in the skin of a rat in hemorrhagic shock (HS). MATERIAL AND METHODS: Male Wistar rats (n = 14) weighing 400-450 g were anesthetized with a combination of tiletamine/zolazepam (20 mg/kg) and xylazine (5 mg/kg). The animals breathed on their own, and were placed on a heated platform in the supine position. A PE-50 catheter was inserted into the carotid artery to measure the mean arterial pressure (MAP). The optical probe of the Laser Doppler device was installed on the plantar surface of the hind limb of a rat; a pneumatic cuff was applied proximal to the same limb. The occlusion time was 3 min. The following physiological variables were measured at baseline and 30 min after blood loss: MAP, mmHg; mean cutaneous blood flow (M, PU); cutaneous vascular conductance (CVC = M/MAP); peak hyperemia (Mmax, PU) and maximum cutaneous vascular conductance (CVCmax) during PORH. In the HS group (n = 7), 30 % of the estimated blood volume was taken within 5 min. There was no blood loss in the group of sham-operated animals (Sham, n = 7). The results are presented as Me [25 %;75 %]. The U-Mann-Whitney criterion was used to evaluate intergroup differences. Differences were considered statistically significant at p < 0.05. RESULTS: The groups did not differ at baseline. Blood loss led to a significant decrease in MAP (43 [31;46] vs. 94 [84;104] mmHg), M (11.5 [16.9;7.8] vs 16.7 [20.2;13.9]) and Mmax (18.1 [16.4;21.8] vs. 25.0 [23.0;26.2]) in the HS group compared to the Sham group, respectively. At the same time, both CVC (0.25 [0.23;0.30] vs. 0.16 [0.14;0.21]) and CVCmax (0.55 [0.38;0.49] vs 0.24 [0.23; 0.29]) increased after blood loss in the HS group compared to the Sham group. Arterial blood gas analysis revealed metabolic lactic acidosis in the HS group. CONCLUSION: In this rat model of HS, alterations in cutaneous blood flow are manifested by a decrease in perfusion (M) and the intensity of PORH (Mmax) with a simultaneous increase in vascular conductance (CVC and CVCmax).


Asunto(s)
Hiperemia , Choque Hemorrágico , Enfermedades Vasculares , Masculino , Animales , Ratas , Choque Hemorrágico/diagnóstico , Ratas Wistar , Microcirculación , Piel/irrigación sanguínea , Flujometría por Láser-Doppler , Flujo Sanguíneo Regional
3.
Brain Sci ; 12(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884727

RESUMEN

In vivo studies of the therapeutic effects of argon in traumatic brain injury (TBI) are limited, and their results are contradictory. The aim of this study was to evaluate the effect of a three-hour inhalation of argon (70%Ar/30%O2) after an open TBI on the severity of the neurological deficit and the degree of brain damage in rats. The experiments were performed on male Wistar rats (n = 35). The TBI was simulated by the dosed open brain contusion injury. The animals were divided into three groups: sham-operated (SO, n = 7); TBI + 70%N2/30%O2 (TBI, n = 14); TBI + 70%Ar/30%O2 (TBI + iAr, n = 14). The Neurological status was assessed over a 14-day period (using the limb-placing and cylinder tests). Magnetic resonance imaging (MRI) scans and a histological examination of the brain with an assessment of the volume of the lesions were performed 14 days after the injury. At each of the time points (days 1, 7, and 14), the limb-placing test score was lower in the TBI and TBI + iAr groups than in the SO group, while there were no significant differences between the TBI and TBI + iAr groups. Additionally, no differences were found between these groups in the cylinder test scores (day 13). The volume of brain damage (tissue loss) according to both the MRI and histological findings did not differ between the TBI and TBI + iAr groups. A three-hour inhalation of argon (70%Ar/30%O2) after a TBI had no neuroprotective effect.

4.
Brain Sci ; 11(11)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34827474

RESUMEN

The thromboembolic ischemia model is one of the most applicable for studying ischemic stroke in humans. The aim of this study was to develop a novel thromboembolic stroke model, allowing, by affordable tools, to reproduce cerebral infarction in rats. In the experimental group, the left common carotid artery, external carotid artery, and pterygopalatine branch of maxillary artery were ligated. A blood clot that was previously formed (during a 20 min period, in a catheter and syringe, by mixing with a thromboplastin solution and CaCl2) was injected into the left internal carotid artery. After 10 min, the catheter was removed, and the incision was sutured. The neurological status of the animals was evaluated using a 20-point scale. Histological examination of brain tissue was performed 6, 24, 72 h, and 6 days post-stroke. All groups showed motor and behavioral disturbances 24 h after surgery, which persisted throughout the study period. A histological examination revealed necrotic foci of varying severity in the cortex and subcortical regions of the ipsilateral hemisphere, for all experimental groups. A decrease in the density of hippocampal pyramidal neurons was revealed. Compared with existing models, the proposed ischemic stroke model significantly reduces surgical time, does not require an expensive operating microscope, and consistently reproduces brain infarction in the area of the middle cerebral artery supply.

5.
Brain Sci ; 11(7)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34356124

RESUMEN

The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon's mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25-30% 60 min) 15-30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...