Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1225150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484951

RESUMEN

Pleiotrophin (PTN) is a cytokine which has been for long studied at the level of the central nervous system, however few studies focus on its role in the peripheral organs. The main aim of this review is to summarize the state of the art of what is known up to date about pleiotrophin and its implications in the main metabolic organs. In summary, pleiotrophin promotes the proliferation of preadipocytes, pancreatic ß cells, as well as cells during the mammary gland development. Moreover, this cytokine is important for the structural integrity of the liver and the neuromuscular junction in the skeletal muscle. From a metabolic point of view, pleiotrophin plays a key role in the maintenance of glucose and lipid as well as whole-body insulin homeostasis and favors oxidative metabolism in the skeletal muscle. All in all, this review proposes pleiotrophin as a druggable target to prevent from the development of insulin-resistance-related pathologies.


Asunto(s)
Insulinas , Enfermedades Metabólicas , Humanos , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Insulinas/metabolismo
2.
Biomedicines ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238989

RESUMEN

Binge drinking during adolescence increases the risk of alcohol use disorder, possibly by involving alterations of neuroimmune responses. Pleiotrophin (PTN) is a cytokine that inhibits Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ. PTN and MY10, an RPTPß/ζ pharmacological inhibitor, modulate ethanol behavioral and microglial responses in adult mice. Now, to study the contribution of endogenous PTN and the implication of its receptor RPTPß/ζ in the neuroinflammatory response in the prefrontal cortex (PFC) after acute ethanol exposure in adolescence, we used MY10 (60 mg/kg) treatment and mice with transgenic PTN overexpression in the brain. Cytokine levels by X-MAP technology and gene expression of neuroinflammatory markers were determined 18 h after ethanol administration (6 g/kg) and compared with determinations performed 18 h after LPS administration (5 g/kg). Our data indicate that Ccl2, Il6, and Tnfa play important roles as mediators of PTN modulatory actions on the effects of ethanol in the adolescent PFC. The data suggest PTN and RPTPß/ζ as targets to differentially modulate neuroinflammation in different contexts. In this regard, we identified for the first time important sex differences that affect the ability of the PTN/RPTPß/ζ signaling pathway to modulate ethanol and LPS actions in the adolescent mouse brain.

3.
Food Chem Toxicol ; 172: 113578, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36566969

RESUMEN

Metabolic Syndrome (MetS) is a risk factor for the development of neurodegenerative diseases. Neuroinflammation associated with MetS may contribute significantly to neurodegeneration. Pleiotrophin (PTN) is a neurotrophic factor that modulates neuroinflammation and is a key player in regulating energy metabolism and thermogenesis, suggesting that PTN could be important in the connection between MetS and neuroinflammation. We have now used a high-fat diet (HFD)-induced obesity model in Ptn-/- mice. HFD and Ptn deletion caused alterations in circulating hormones including GIP, leptin and resistin. HFD produced in Ptn+/+ mice a neuroinflammatory state as observed in cerebral quantifications of proinflammatory markers, including Il1ß, Tnfα and Ccl2. The upregulation of neuroinflammatory markers was prevented in Ptn-/- mice. Changes induced by HFD in genes related to mitochondrial biogenesis and dynamics were less pronounced in the brain of Ptn-/- mice and were accompanied by significant increases in the protein expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I and IV. HFD-induced changes in genes related to the elimination of protein aggregates were also less pronounced in the brain of Ptn-/- mice. This study provides substantial evidence that Ptn deletion protects against HFD-induced neuroinflammation, mitochondrial dysfunction, and aberrant protein aggregation, prominent features in neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Agregado de Proteínas , Ratones , Animales , Enfermedades Neuroinflamatorias , Dieta Alta en Grasa/efectos adversos , Encéfalo/metabolismo , Citocinas/genética , Citocinas/metabolismo
4.
FASEB J ; 35(10): e21911, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34551152

RESUMEN

Pleiotrophin is a pleiotropic cytokine that has been demonstrated to have a critical role in regulating energy metabolism, lipid turnover and plasticity of adipose tissue. Here, we hypothesize that this cytokine can be involved in regulatory processes of glucose and lipid homeostasis in the liver during pregnancy. Using 18-days pregnant Ptn-deficient mice, we evaluated the biochemical profile (circulating variables), tissue mRNA expression (qPCR) and protein levels of key enzymes and transcription factors involved in main metabolic pathways. Ptn deletion was associated with a reduction in body weight gain, hyperglycemia and glucose intolerance. Moreover, we observed an impairment in glucose synthesis and degradation during late pregnancy in Ptn-/- mice. Hepatic lipid content was significantly lower (73.6%) in Ptn-/- mice and was associated with a clear reduction in fatty acid, triacylglycerides and cholesterol synthesis. Ptn deletion was accompanying with a diabetogenic state in the mother and a decreased expression of key proteins involved in glucose and lipid uptake and metabolism. Moreover, Ptn-/- pregnant mice have a decreased expression of transcription factors, such as PPAR-α, regulating lipid uptake and glucose and lipid utilization. Furthermore, the augmented expression and nuclear translocation of glycerol kinase, and the decrease in NUR77 protein levels in the knock-out animals can further explain the alterations observed in hepatic glucose metabolism. Our results point out for the first time that pleiotrophin is an important player in maintaining hepatic metabolic homeostasis during late gestation, and further highlighted the moonlighting role of glycerol kinase in the regulation of maternal glucose homeostasis during pregnancy.


Asunto(s)
Proteínas Portadoras/genética , Citocinas/deficiencia , Citocinas/genética , Eliminación de Gen , Intolerancia a la Glucosa/genética , Glicerol Quinasa/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Animales , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Femenino , Glucosa/biosíntesis , Glucosa/metabolismo , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Embarazo , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo , Aumento de Peso/genética
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502170

RESUMEN

(1) Background: Pleiotrophin preserves insulin sensitivity, regulates adipose tissue lipid turnover and plasticity, energy metabolism and thermogenesis. The aim of this study was to determine the role of pleiotrophin in hepatic lipid metabolism and in the metabolic crosstalk between the liver and brown and white adipose tissue (AT) in a high-fat diet-induced (HFD) obesity mice model. (2) Methods: We analyzed circulating variables, lipid metabolism (hepatic lipid content and mRNA expression), brown AT thermogenesis (UCP-1 expression) and periovarian AT browning (brown adipocyte markers mRNA and immunodetection) in Ptn-/- mice either fed with standard-chow diet or with HFD and in their corresponding Ptn+/+ counterparts. (3) Results: HFD-Ptn-/- mice are protected against the development of HFD-induced insulin resistance, had lower liver lipid content and lower expression of the key enzymes involved in triacylglycerides and fatty acid synthesis in liver. HFD-Ptn-/- mice showed higher UCP-1 expression in brown AT. Moreover, Ptn deletion increased the expression of specific markers of brown/beige adipocytes and was associated with the immunodetection of UCP-1 enriched multilocular adipocytes in periovarian AT. (4) Conclusions: Ptn deletion protects against the development of HFD-induced insulin resistance and liver steatosis, by increasing UCP-1 expression in brown AT and promoting periovarian AT browning.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Citocinas/deficiencia , Dieta Alta en Grasa/efectos adversos , Susceptibilidad a Enfermedades , Hígado Graso/etiología , Hígado Graso/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Biomarcadores , Proteínas Portadoras , Modelos Animales de Enfermedad , Metabolismo Energético , Hígado Graso/patología , Expresión Génica , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Tamaño de los Órganos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071721

RESUMEN

Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Insulina/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Humanos , Resistencia a la Insulina , Obesidad , Prevalencia , Proteínas Tirosina Fosfatasas/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología
7.
Diabetologia ; 62(1): 123-135, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30327824

RESUMEN

AIMS/HYPOTHESIS: Pleiotrophin, a developmentally regulated and highly conserved cytokine, exerts different functions including regulation of cell growth and survival. Here, we hypothesise that this cytokine can play a regulatory role in glucose and lipid homeostasis. METHODS: To test this hypothesis, we performed a longitudinal study characterising the metabolic profile (circulating variables and tissue mRNA expression) of gene-targeted Ptn-deficient female mice and their corresponding wild-type counterparts at different ages from young adulthood (3 months) to older age (15 months). Metabolic cages were used to investigate the respiratory exchange ratio and energy expenditure, at both 24°C and 30°C. Undifferentiated immortalised mouse brown adipocytes (mBAs) were treated with 0.1 µg/ml pleiotrophin until day 6 of differentiation, and markers of mBA differentiation were analysed by quantitative real-time PCR (qPCR). RESULTS: Ptn deletion was associated with a reduction in total body fat (20.2% in Ptn+/+ vs 13.9% in Ptn-/- mice) and an enhanced lipolytic response to isoprenaline in isolated adipocytes from 15-month-old mice (189% in Ptn+/+ vs 273% in Ptn-/- mice). We found that Ptn-/- mice exhibited a significantly lower QUICKI value and an altered lipid profile; plasma triacylglycerols and NEFA did not increase with age, as happens in Ptn+/+ mice. Furthermore, the contribution of cold-induced thermogenesis to energy expenditure was greater in Ptn-/- than Ptn+/+ mice (42.6% and 33.6%, respectively). Body temperature and the activity and expression of deiodinase, T3 and mitochondrial uncoupling protein-1 in the brown adipose tissue of Ptn-/- mice were higher than in wild-type controls. Finally, supplementing brown pre-adipocytes with pleiotrophin decreased the expression of the brown adipocyte markers Cidea (20% reduction), Prdm16 (21% reduction), and Pgc1-α (also known as Ppargc1a, 11% reduction). CONCLUSIONS/INTERPRETATION: Our results reveal for the first time that pleiotrophin is a key player in preserving insulin sensitivity, driving the dynamics of adipose tissue lipid turnover and plasticity, and regulating energy metabolism and thermogenesis. These findings open therapeutic avenues for the treatment of metabolic disorders by targeting pleiotrophin in the crosstalk between white and brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Metabolismo Energético/fisiología , Termogénesis/fisiología , Animales , Proteínas Portadoras/genética , Citocinas/genética , Metabolismo Energético/genética , Femenino , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Estudios Longitudinales , Ratones , Ratones Noqueados , Termogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...