RESUMEN
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible lung disorder of unknown cause. This disease is characterized by profibrotic activation of resident pulmonary fibroblasts resulting in aberrant deposition of extracellular matrix (ECM) proteins. However, although much is known about the pathophysiology of IPF, the cellular and molecular processes that occur and allow aberrant fibroblast activation remain an unmet need. To explore the differentially expressed proteins (DEPs) associated with aberrant activation of these fibroblasts, we used the IPF lung fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2), compared to the normal lung fibroblast cell line CCD19Lu (NL-1). Protein samples were quantified and identified using a label-free quantitative proteomic analysis approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified after pairwise comparison, including all experimental groups. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) network construction were used to interpret the proteomic data. Eighty proteins expressed exclusively in the IPF-1 and IPF-2 clusters were identified. In addition, 19 proteins were identified up-regulated in IPF-1 and 10 in IPF-2; 10 proteins were down-regulated in IPF-1 and 2 in IPF-2 when compared to the NL-1 proteome. Using the search tool for retrieval of interacting genes/proteins (STRING) software, a PPI network was constructed between the DEPs and the 80 proteins expressed exclusively in the IPF-2 and IPF-1 clusters, containing 115 nodes and 136 edges. The 10 hub proteins present in the IPP network were identified using the CytoHubba plugin of the Cytoscape software. GO and KEGG pathway analyses showed that the hub proteins were mainly related to cell adhesion, integrin binding, and hematopoietic cell lineage. Our results provide relevant information on DEPs present in IPF lung fibroblast cell lines when compared to the normal lung fibroblast cell line that could play a key role during IPF pathogenesis.
Asunto(s)
Fibrosis Pulmonar Idiopática , Proteómica , Línea Celular , Cromatografía Liquida , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodosRESUMEN
Hepatocellular carcinoma (HCC) is a health problem worldwide due to its high mortality rate, and the tumor microenvironment (TME) plays a key role in the HCC progression. The current ineffective therapies to fight the disease still warrant the development of preventive strategies. Quercetin has been shown to have different antitumor activities; however, its effect on TME components in preneoplastic lesions has not been fully investigated yet. Here, we aimed to evaluate the effect of quercetin (10 mg/kg) on TME components during the early stages of HCC progression induced in the rat. Histopathological and immunohistochemical analyses showed that quercetin decreases the size of preneoplastic lesions, glycogen and collagen accumulation, the expression of cancer stem cells and myofibroblasts markers, and that of the transporter ATP binding cassette subfamily C member 3 (ABCC3), a marker of HCC progression and multi-drug resistance. Our results strongly suggest that quercetin has the capability to reduce key components of TME, as well as the expression of ABCC3. Thus, quercetin can be an alternative treatment for inhibiting the growth of early HCC tumors.