Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38794238

RESUMEN

Itraconazole is a drug used in veterinary medicine for the treatment of different varieties of dermatophytosis at doses between 3-5 mg/kg/day in cats. Nevertheless, in Spain, it is only available in the market as a 52 mL suspension at 10 mg/mL. The lack of alternative formulations, which provide sufficient formulation to cover the treatment of large animals or allow the treatment of a group of them, can be overcome with compounding. For this purpose, it has to be considered that itraconazole is a weak base, class II compound, according to the Biopharmaceutics Classification System, that can precipitate when reaching the duodenum. The aim of this work is to develop alternative oral formulations of itraconazole for the treatment of dermatophytosis. Several oral compounds of itraconazole were prepared and compared, in terms of dissolution rate, permeability, and stability, in order to provide alternatives to the medicine commercialized. The most promising formulation contained hydroxypropyl methylcellulose and ß-cyclodextrin. This combination of excipients was capable of dissolving the same concentration as the reference product and delaying the precipitation of itraconazole upon leaving the stomach. Moreover, the intestinal permeability of itraconazole was increased more than two-fold.

2.
Nanomedicine (Lond) ; 18(25): 1799-1813, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37990994

RESUMEN

Background: Glioblastoma is the most common and lethal brain cancer. New treatments are needed. However, the presence of the blood-brain barrier is limiting the development of new treatments directed toward the brain, as it restricts the access and distribution of drugs to the CNS. Materials & methods: In this work, two different nanoparticles (i.e., mesoporous silica nanoparticles and magnetic mesoporous silica nanoparticles) loaded with ponatinib were prepared. Results & conclusion: Both particles were characterized and tested in vitro and in vivo, proving that they are not toxic for blood-brain barrier cells and they increase the amount of drug reaching the brain when administered intranasally in comparison with the results obtained for the free drug.


This article presents a couple of promising nanoparticles for the treatment of brain cancer. This research is interesting because the brain and spinal cord are protected by a membrane that prevents toxic substances from reaching them but also hinders the access of drugs. One type of particle has a magnet in its core, so it can be driven with another external magnet until it reaches target; the other type does not have a magnet but has a small size, which would allow it to cross the membrane mentioned above. These particles have been proven to be able to kill cancer cells and to reach the brain after been administered through the nose in a better way than the free drug.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Administración Intranasal , Encéfalo , Dióxido de Silicio , Sistemas de Liberación de Medicamentos/métodos , Porosidad
3.
Pharmaceutics ; 15(5)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37242673

RESUMEN

Currently, the mechanisms involved in drug access to the central nervous system (CNS) are not completely elucidated, and research efforts to understand the behaviour of the therapeutic agents to access the blood-brain barrier continue with the utmost importance. The aim of this work was the creation and validation of a new in vitro model capable of predicting the in vivo permeability across the blood-brain barrier in the presence of glioblastoma. The selected in vitro method was a cell co-culture model of epithelial cell lines (MDCK and MDCK-MDR1) with a glioblastoma cell line (U87-MG). Several drugs were tested (letrozole, gemcitabine, methotrexate and ganciclovir). Comparison of the proposed in vitro model, MDCK and MDCK-MDR1 co-cultured with U87-MG, and in vivo studies showed a great predictability for each cell line, with R2 values of 0.8917 and 0.8296, respectively. Therefore, both cells lines (MDCK and MDCK-MDR1) are valid for predicting the access of drugs to the CNS in the presence of glioblastoma.

4.
Int J Pharm ; 636: 122759, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801479

RESUMEN

The blood-brain barrier (BBB) limits the access of substances to the central nervous system (CNS) which hinders the treatment of pathologies affecting the brain and the spinal cord. Nowadays, research is focus on new strategies to overcome the BBB and can treat the pathologies affecting the CNS are needed. In this review, the different strategies that allow and increase the access of substances to the CNS are analysed and extended commented, not only invasive strategies but also non-invasive ones. The invasive techniques include the direct injection into the brain parenchyma or the CSF and the therapeutic opening of the BBB, while the non-invasive techniques include the use of alternative routes of administration (nose-to-brain route), the inhibition of efflux transporters (as it is important to prevent the drug efflux from the brain and enhance the therapeutic efficiency), the chemical modification of the molecules (prodrugs and chemical drug delivery systems (CDDS)) and the use of nanocarriers. In the future, knowledge about nanocarriers to treat CNS diseases will continue to increase, but the use of other strategies such as drug repurposing or drug reprofiling, which are cheaper and less time consuming, may limit its transfer to society. The main conclusion is that the combination of different strategies may be the most interesting approach to increase the access of substances to the CNS.


Asunto(s)
Barrera Hematoencefálica , Enfermedades del Sistema Nervioso Central , Humanos , Sistema Nervioso Central , Encéfalo , Sistemas de Liberación de Medicamentos/métodos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
5.
Pharmaceutics ; 14(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36559059

RESUMEN

Some years ago, excipients were considered inert substances irrelevant in the absorption process. However, years of study have demonstrated that this belief is not always true. In this study, the reasons for a bioequivalence failure between two formulations of silodosin are investigated. Silodosin is a class III drug according to the Biopharmaceutics Classification System, which has been experimentally proven by means of solubility and permeability experiments. Dissolution tests have been performed to identify conditions concordant with the non-bioequivalent result obtained from the human bioequivalence study and it has been observed that paddles at 50 rpm are able to detect inconsistent differences between formulations at pH 4.5 and pH 6.8 (which baskets at 100 rpm are not able to do), whereas the GIS detects differences at the acidic pH of the stomach. It has also been observed that the differences in excipients between products did not affect the disintegration process, but disintegrants did alter the permeability of silodosin through the gastrointestinal barrier. Crospovidone and povidone, both derivatives of PVP, are used as disintegrants in the test product, instead of the pregelatinized corn starch used in the reference product. Permeability experiments show that PVP increases the absorption of silodosin-an increase that would explain the greater Cmax observed for the test product in the bioequivalence study.

6.
Animals (Basel) ; 11(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944295

RESUMEN

The development of new drugs or formulations for central nervous system (CNS) diseases is a complex pharmacologic and pharmacokinetic process; it is important to evaluate their access to the CNS through the blood-brain barrier (BBB) and their distribution once they have acceded to the brain. The gold standard tool for obtaining this information is the animal microdialysis technique; however, according to 3Rs principles, it would be better to have an "animal-free" alternative technique. Because of that, the purpose of this work was to develop a new formulation to substitute the brain homogenate in the in vitro tests used for the prediction of a drug's distribution in the brain. Fresh eggs have been used to prepare an emulsion with the same proportion in proteins and lipids as a human brain; this emulsion has proved to be able to predict both the unbound fraction of drug in the brain (fu,brain) and the apparent volume of distribution in the brain (Vu,brain) when tested in in vitro permeability tests. The new formulation could be used as a screening tool; only the drugs with a proper in vitro distribution would pass to microdialysis studies, contributing to the refinement, reduction and replacement of animals in research.

7.
Pharmaceutics ; 13(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34575476

RESUMEN

One of the main obstacles in neurological disease treatment is the presence of the blood-brain barrier. New predictive high-throughput screening tools are essential to avoid costly failures in the advanced phases of development and to contribute to the 3 Rs policy. The objective of this work was to jointly develop a new in vitro system coupled with a physiological-based pharmacokinetic (PBPK) model able to predict brain concentration levels of different drugs in rats. Data from in vitro tests with three different cells lines (MDCK, MDCK-MDR1 and hCMEC/D3) were used together with PK parameters and three scaling factors for adjusting the model predictions to the brain and plasma profiles of six model drugs. Later, preliminary quantitative structure-property relationships (QSPRs) were constructed between the scaling factors and the lipophilicity of drugs. The predictability of the model was evaluated by internal validation. It was concluded that the PBPK model, incorporating the barrier resistance to transport, the disposition within the brain and the drug-brain binding combined with MDCK data, provided the best predictions for passive diffusion and carrier-mediated transported drugs, while in the other cell lines, active transport influence can bias predictions.

8.
Eur J Pharm Biopharm ; 163: 120-126, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33838261

RESUMEN

The BBB is a protective entity that prevents external substances from reaching the CNS but it also hinders the delivery of drugs into the brain when they are needed. The main objective of this work was to improve a previously proposed in vitro cell-based model by using a more physiological cell line (hCMEC/D3) to predict the main pharmacokinetic parameters that describe the access and distribution of drugs in the CNS: Kpuu,brain, fu,plasma, fu,brain and Vu,brain. The hCMEC/D3 permeability of seven drugs was studied in transwell systems under different conditions (standard, modified with albumin and modified with brain homogenate). From the permeability coefficients of those experiments, the parameters mentioned above were calculated and four linear IVIVCs were established. The best ones were those that relate the in vitro and in vivo Vu,brain and fu,brain (r2 = 0.961 and r2 = 0.940) which represent the binding rate of a substance to the brain tissue, evidencing the importance of using brain homogenate to mimic brain tissue when an in vitro brain permeability assay is done. This methodology could be a high-throughput screening tool in drug development to select the CNS promising drugs in three different in vitro BBB models (hCMEC/D3, MDCK and MDCK-MDR1).


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Línea Celular , Perros , Evaluación Preclínica de Medicamentos/métodos , Humanos , Células de Riñón Canino Madin Darby , Permeabilidad , Distribución Tisular
9.
Pharmaceutics ; 13(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451061

RESUMEN

Giardiasis is a parasitism produced by the protozoa Giardia intestinalis that lives as trophozoite in the small intestine (mainly in the duodenum) attached to the intestinal villus by means of billed discs. The first line treatment is metronidazole, a drug with high bioavailability, which is why to obtain therapeutic concentrations in duodenum, it is necessary to administer high doses of drug to patients with the consequent occurrence of side effects. It is necessary to developed new therapeutical approaches to achieve a local delivery of the drug. In this sense, we have developed gated mesoporous silica microparticles loaded with metronidazole and with a molecular gate pH dependent. In vitro assays demonstrated that the metronidazole release is practically insignificant at acidic pHs, but in duodenum conditions, the metronidazole delivery from the microparticles is effective enough to produce an important parasite destruction. In vivo assays indicate that this microparticulate system allows to increase the concentration of the drug in duodenum and reduce the concentration in plasma avoiding systemic effects. This system could be useful for other intestinal local treatments in order to reduce doses and increase drug availability in target tissues.

10.
Eur J Pharm Biopharm ; 158: 185-197, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33248267

RESUMEN

Finding predictive dissolution tests and valid IVIVCs are essential activities in generic industry, as they can be used as substitutes of human bioequivalence studies. IVIVCs can be developed by two different strategies: a one-step approach or a two-step approach. The objectives of this work were to compare different deconvolution and convolution methods used in the development of two-step level A IVIVCs and to study if the relationship between the in vitro dissolution rate and the in vivo dissolution rate should guide the decision between using a two-step approach or a one-step approach during the development of a new IVIVC. When the in vitro and the in vivo dissolution rates had a linear relationship, valid and biopredictive two-step IVIVCs were obtained, although there was not a combination of deconvolution and convolution methods that could be named as the best one, as long as all the prediction errors for any combination were within the limits. It was not possible to obtain a valid two-step IVIVC when the relationship between dissolution rates was non-linear, but the one-step approach was able to overcome this fact and it gave valid IVIVCs regardless of whether the relationship between dissolution rates was linear or non-linear.


Asunto(s)
Química Farmacéutica/métodos , Modelos Biológicos , Modelos Químicos , Administración Oral , Área Bajo la Curva , Disponibilidad Biológica , Simulación por Computador , Liberación de Fármacos , Humanos , Solubilidad , Equivalencia Terapéutica
11.
Pharmaceutics ; 12(7)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640620

RESUMEN

The main objective of this investigation was to develop an in vitro-in vivo correlation (IVIVC) for immediate release candesartan cilexetil formulations by designing an in vitro dissolution test to be used as development tool. The IVIVC could be used to reduce failures in future bioequivalence studies. Data from two bioequivalence studies were scaled and combined to obtain the dataset for the IVIVC. Two-step and one-step approaches were used to develop the IVIVC. Experimental solubility and permeability data confirmed candesartan cilexetil. Biopharmaceutic Classification System (BCS) class II candesartan average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed. Fractions dissolved were obtained in several conditions in USP II and IV apparatus and the results were compared calculating the f2 similarity factor. Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the products of candesartan cilexetil employed the USP IV apparatus and a three-step pH buffer change, from 1.2 to 4.5 and 6.8, with 0.2% of Tween 20. This new model was able to predict the in vivo differences in dissolution and it could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.

12.
Expert Opin Drug Deliv ; 17(6): 791-803, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32248713

RESUMEN

INTRODUCTION: Controlled release (CR) dosage forms comprise a wide range of technologies, which modify the drug pharmacokinetic (PK) profile by avoiding the immediate release (IR) of the active pharmaceutical ingredient (API). They are particularly of interest in chronic diseases, for narrow therapeutic index drugs or for targeting a particular gastrointestinal tract (GI) segment. AREAS COVERED: Diffusion and dissolution limited controlled release systems are described in terms of release kinetics and formulation strategies with e xamples marketed or under development. Additionally, the physiological variables affecting the release (such as fluid pH, volume and composition, physical forces, and transit times) and the in vitro dissolution techniques currently available are reviewed. EXPERT OPINION: Selection of the appropriate release mechanism is not a straightforward process, as it requires a balance based on the desired target, the API properties and the technological challenges of the dosage form structure. Diffusion, dissolution or a combination of both could be adequate without an absolute superiority of one mechanism over the other. The combination of in vivo predictive dissolution systems, with mathematical modeling of the release mechanism and its correlation with formulation composition could help to design prototype candidates, with enhanced probabilities of success in human clinical trials.


Asunto(s)
Preparaciones de Acción Retardada , Tracto Gastrointestinal/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Administración Oral , Difusión , Formas de Dosificación , Humanos , Técnicas In Vitro , Cinética , Preparaciones Farmacéuticas/química , Solubilidad
13.
Mol Pharm ; 15(6): 2307-2315, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29746133

RESUMEN

The purpose of this investigation was to develop an exploratory two-step level A IVIVC for three telmisartan oral immediate release formulations, the reference product Micardis, and two generic formulations (X1 and X2). Correlation was validated with a third test formulation, Y1. Experimental solubility and permeability data were obtained to confirm that telmisartan is a class II compound under the Biopharmaceutic Classification System. Bioequivalence (BE) studies plasma profiles were combined using a previously published reference scaling procedure. X2 demonstrated in vivo BE, while X1 and Y1 failed to show BE due to the lower boundary of the 90% confidence interval for Cmax being outside the acceptance limits. Average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed ( fa). Fractions dissolved ( fdiss) were obtained in several conditions in USP II and USP IV apparatus, and later, the results were compared in order to find the most biopredictive model, calculating the f2 similarity factor. The apparatus and conditions showing the same rank order than in vivo data were selected for further refinement of conditions. A Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the different formulations of telmisartan employed the USP IV dissolution apparatus and a dissolution environment with a flow rate of 8 mL/min and a three-step pH change, from 1.2 to 4.5 and 6.8, with a 0.05% of Tween 80. Thus, these conditions gave rise to a biopredictive dissolution test. This new model is able to predict the formulation differences in dissolution that were previously observed in vivo, which could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.


Asunto(s)
Medicamentos Genéricos/farmacocinética , Telmisartán/farmacocinética , Administración Oral , Disponibilidad Biológica , Células CACO-2 , Estudios Cruzados , Liberación de Fármacos , Medicamentos Genéricos/administración & dosificación , Medicamentos Genéricos/química , Voluntarios Sanos , Humanos , Absorción Intestinal , Solubilidad , Telmisartán/administración & dosificación , Telmisartán/química , Equivalencia Terapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...