RESUMEN
The excessive use of antibiotics in aquaculture favors the natural selection of multidrug-resistant bacteria, and antimicrobial peptides (AMPs) could be a promising alternative to this problem. The most studied AMPs in teleost fish are piscidins, hepcidins, and ß-defensins. In this work, we have found a new gene (defb2) encoding a type 2 ß-defensin in the genome of gilthead seabream, a species chosen for its economic interest in aquaculture. Its open reading frame (192 bp) encodes a protein (71 amino acids) that undergoes proteolytic cleavage to obtain the functional mature peptide (42 amino acids). The genetic structure in three exons and two introns and the six characteristic cysteines are conserved as the main signature of this protein family. In the evolutionary analysis, synteny shows a preservation of chromosomal localization and the phylogenetic tree constructed exposes the differences between both types of ß-defensin as well as the similarities between seabream and European seabass. In relation to its basal expression, ß-defensin 2 is mostly expressed in the intestine, thymus, skin, and gonads of the gilthead seabream (Sparus aurata). In head kidney leucoytes (HKLs), the expression was very low and did not change significantly when stimulated with various immunocompetent agents. However, the expression was significantly down-regulated in the liver, head-kidney, and blood 4 h post-injection with the fish pathogen Vibrio harveyi. When infected with nodavirus, the expression was downregulated in brain at 7 days post-infection. These results denote a possible complementarity between the expression patterns of ß-defensins and hepcidins. Further studies are needed to analyze gene duplications and expression patterns of ß-defensins and describe their mechanism of action in seabream and other teleost fish.
RESUMEN
Dysregulation of nicotinamide adenine dinucleotide (NAD+) homeostasis by increased activity of NAD+ consumers or reduced NAD+ biosynthesis plays an important role in the onset of prevalent, often age-related, diseases, such as diabetes, neuropathies or nephropathies. To counteract such dysregulation, NAD+ replenishment strategies can be used. Among these, administration of vitamin B3 derivatives (NAD+ precursors) has garnered attention in recent years. However, the high market price of these compounds and their limited availability, pose important limitations to their use in nutritional or biomedical applications. To overcome these limitations, we have designed an enzymatic method for the synthesis and purification of (1) the oxidized NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), (2) their reduced forms NMNH and NRH, and (3) their deaminated forms nicotinic acid mononucleotide (NaMN) and nicotinic acid riboside (NaR). Starting from NAD+ or NADH as substrates, we use a combination of three highly overexpressed soluble recombinant enzymes; (a) a NAD+ pyrophosphatase, (b) an NMN deamidase, and (c) a 5'-nucleotidase, to produce these six precursors. Finally, we validate the activity of the enzymatically produced molecules as NAD+ enhancers in cell culture.
Asunto(s)
Biotecnología , NAD , Técnicas de Cultivo de Célula , Homeostasis , NucleótidosRESUMEN
Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.
Asunto(s)
COVID-19 , Animales , Humanos , SARS-CoV-2 , Pez Cebra , Prueba de COVID-19RESUMEN
The development of tools that provide early triage of COVID-19 patients with minimal use of diagnostic tests, based on easily accessible data, can be of vital importance in reducing COVID-19 mortality rates during high-incidence scenarios. This work proposes a machine learning model to predict mortality and risk of hospitalization using both 2 simple demographic features and 19 comorbidities obtained from 86,867 electronic medical records of COVID-19 patients, and a new method (LR-IPIP) designed to deal with data imbalance problems. The model was able to predict with high accuracy (90-93%, ROC-AUC = 0.94) the patient's final status (deceased or discharged), while its accuracy was medium (71-73%, ROC-AUC = 0.75) with respect to the risk of hospitalization. The most relevant characteristics for these models were age, sex, number of comorbidities, osteoarthritis, obesity, depression, and renal failure. Finally, to facilitate its use by clinicians, a user-friendly website has been developed ( https://alejandrocisterna.shinyapps.io/PROVIA ).
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Estudios Retrospectivos , Curva ROC , Hospitalización , Triaje/métodosRESUMEN
From the discovery of pleurocidin in skin mucus of winter flounder, many new related sequences have been found, forming a fish-exclusive family of antimicrobial peptides (AMP) called piscidin. Their mature peptides have a broad-spectrum antimicrobial activity and can be involved in the innate immune response. In the present work, two paralogous tripartite piscidin genes are formally described for the first time in gilthead seabream (Sparus aurata), an important marine farmed fish. Gene synteny and protein phylogeny clearly indicated a massive pisc gene expansion in a cluster of the chromosome 22 as well as a special evolution of piscidin in gilthead seabream compared to the rest of piscidins studied in other fish species. Despite being highly similar genes, they show totally different expression patterns in tissues and head-kidney leucocytes under both naïve and Vibrio/nodavirus-stimulated conditions. Moreover, these paralogous genes coded very different proteins according to their physicochemical properties. In this way, these piscidin genes have distinct roles not only related to their microbicide activity but also to their immune modulation. In addition, the present study improves the knowledge of duplication of AMP genes and adaptative diversification of teleost immune system.
Asunto(s)
Dorada , Vibrio , Animales , Riñón Cefálico , Inmunidad Innata/genéticaRESUMEN
Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.
Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mucor/enzimología , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Evolución Molecular , Proteínas Fúngicas/genética , Modelos Moleculares , Mucorales/enzimología , Mucorales/patogenicidad , Dominios Proteicos , ARN/metabolismo , Ribonucleasa III/genética , VirulenciaRESUMEN
Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.
Asunto(s)
NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Animales , Línea Celular , Supervivencia Celular , Células Epiteliales/efectos de los fármacos , Homeostasis , Humanos , Túbulos Renales , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , NAD/genética , Mononucleótido de Nicotinamida/química , Daño por ReperfusiónRESUMEN
Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships among dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from 10 human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson's disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, 4 of 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrate significant enrichments of the heritability of major depressive disorder, obsessive-compulsive disorder and schizophrenia within the putamen and white matter modules, and a significant enrichment of the heritability of Parkinson's disease within the substantia nigra module. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology.
Asunto(s)
Trastornos Distónicos/genética , Redes Reguladoras de Genes/genética , Trastornos Mentales/genética , Neuronas/fisiología , Trastornos Distónicos/diagnóstico , Trastornos Distónicos/epidemiología , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/epidemiologíaRESUMEN
Nudix (for nucleoside diphosphatases linked to other moieties, X) hydrolases are a diverse family of proteins capable of cleaving an enormous variety of substrates, ranging from nucleotide sugars to NAD+-capped RNAs. Although all the members of this superfamily share a common conserved catalytic motif, the Nudix box, their substrate specificity lies in specific sequence traits, which give rise to different subfamilies. Among them, NADH pyrophosphatases or diphosphatases (NADDs) are poorly studied and nothing is known about their distribution. To address this, we designed a Prosite-compatible pattern to identify new NADDs sequences. In silico scanning of the UniProtKB database showed that 3% of Nudix proteins were NADDs and displayed 21 different domain architectures, the canonical architecture (NUDIX-like_zf-NADH-PPase_NUDIX) being the most abundant (53%). Interestingly, NADD fungal sequences were prominent among eukaryotes, and were distributed over several Classes, including Pezizomycetes. Unexpectedly, in this last fungal Class, NADDs were found to be present from the most common recent ancestor to Tuberaceae, following a molecular phylogeny distribution similar to that previously described using two thousand single concatenated genes. Finally, when truffle-forming ectomycorrhizal Tuber melanosporum NADD was biochemically characterized, it showed the highest NAD+/NADH catalytic efficiency ratio ever described.
Asunto(s)
Biología Computacional/métodos , Pirofosfatasas/genética , Saccharomycetales/enzimología , Simulación por Computador , Bases de Datos de Proteínas , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Dominios Proteicos , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Saccharomycetales/genética , Especificidad por SustratoRESUMEN
Macrodomains constitute a conserved fold widely distributed that is not only able to bind ADP-ribose in its free and protein-linked forms but also can catalyse the hydrolysis of the latter. They are involved in the regulation of important cellular processes, such as signalling, differentiation, proliferation and apoptosis, and in host-virus response, and for this, they are considered as promising therapeutic targets to slow tumour progression and viral pathogenesis. Although extensive work has been carried out with them, including their classification into six distinct phylogenetically clades, little is known on bacterial macrodomains, especially if these latter are able to remove poly(ADP-ribose) polymer (PAR) from PARylated proteins, activity that only has been confirmed in human TARG1 (C6orf130) protein. To extend this limited knowledge, we demonstrate, after a comprehensive bioinformatic and phylogenetic analysis, that Fusobacterium mortiferum ATCC 9817 TARG1 (FmTARG1) is the first bacterial macrodomain shown to have high catalytic efficiency towards O-acyl-ADP-ribose, even more than hTARG1, and towards mono- and poly(ADPribosyl)ated proteins. Surprisingly, FmTARG1 gene is also inserted into a unique operonic context, only shared by the distantly related Fusobacterium perfoetens ATCC 29250 macrodomain, which include an immunity protein 51 domain, typical of bacterial polymorphic toxin systems.
Asunto(s)
Proteínas Bacterianas/química , Fusobacterium/metabolismo , Hidrolasas/química , N-Glicosil Hidrolasas/química , Poli Adenosina Difosfato Ribosa/metabolismo , Dominios Proteicos , Secuencia de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Fusobacterium/genética , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , N-Glicosil Hidrolasas/clasificación , N-Glicosil Hidrolasas/genética , Filogenia , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Homología de Secuencia de Aminoácido , Temperatura , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismoRESUMEN
Poly-ADP-ribose polymerases (PARPs) are involved in the regulation of important cellular processes, such as DNA repair, aging and apoptosis, among others. They have been considered as promising therapeutic targets, since human cancer cells carrying BRCA1 and BRCA2 mutations are highly sensitive to human PARP-1 inhibitors. Although extensive work has been carried out with the latter enzyme, little is known on bacterial PARPs, of which only one has been demonstrated to be active. To extend this limited knowledge, we demonstrate that the Gram-positive bacterium Clostridioides difficile CD160 PARP is a highly active enzyme with a high production yield. Its phylogenetic analysis also pointed to a singular domain organization in contrast to other clostridiales, which could be due to the long-term divergence of C. difficile CD160. Surprisingly, its PARP becomes the first enzyme to be characterized from this strain, which has a genotype never before described based on its sequenced genome. Finally, the inhibition study carried out after a high-throughput in silico screening and an in vitro testing with hPARP1 and bacterial PARPs identified a different inhibitory profile, a new highly inhibitory compound never before described for hPARP1, and a specificity of bacterial PARPs for a compound that mimics NAD+ (EB-47).
Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Clostridioides difficile/enzimología , Infecciones por Clostridium/tratamiento farmacológico , NAD/análogos & derivados , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Bacterianas/metabolismo , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/microbiología , Humanos , Isoindoles/farmacología , Modelos Moleculares , NAD/metabolismo , Filogenia , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Conformación ProteicaRESUMEN
Nicotinamidases are amidohydrolases that convert nicotinamide into nicotinic acid, contributing to NAD+ homeostasis in most organisms. In order to increase the number of nicotinamidases described to date, this manuscript characterizes a nicotinamidase obtained from a metagenomic library fosmid clone (JFF054_F02) obtained from a geothermal water stream microbial mat community in a Japanese epithermal mine. The enzyme showed an optimum temperature of 90°C, making it the first hyperthermophilic bacterial nicotinamidase to be characterized, since the phylogenetic analysis of this fosmid clone placed it in a clade of uncultured geothermal bacteria. The enzyme, named as UbNic, not only showed an alkaline optimum pH, but also a biphasic pH dependence of its kcat, with a maximum at pH 9.5-10.0. The two pKa values obtained were 4.2 and 8.6 for pKes1 and pKes2, respectively. These results suggest a possible flexible catalytic mechanism for nicotinamidases, which reconciles the two previously proposed mechanisms. In addition, the enzyme showed a high catalytic efficiency, not only toward nicotinamide, but also toward other nicotinamide analogs. Its mutational analysis showed that a tryptophan (W83) is needed in one of the faces of the active site to maintain low Km values toward all the substrates tested. Furthermore, UbNic proved to contain a Fe2+ ion in its metal binding site, and was revealed to belong to a new nicotinamidase subgroup. All these characteristics, together with its high pH- and thermal stability, distinguish UbNic from previously described nicotinamidases, and suggest that a wide diversity of enzymes remains to be discovered in extreme environments.
Asunto(s)
Bacterias/enzimología , Manantiales de Aguas Termales/microbiología , Microbiota , Nicotinamidasa/metabolismo , Ríos/microbiología , Microbiología del Agua , Aldehídos/metabolismo , Secuencia de Aminoácidos , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Proteínas Mutantes/metabolismo , Nicotinamidasa/antagonistas & inhibidores , Nicotinamidasa/química , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , TemperaturaRESUMEN
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bacterial NMN deamidases have been poorly studied, although they have been investigated in some firmicutes, gamma-proteobacteria and actinobacteria. In this study, we present the first characterization of an NMN deamidase from an alphaproteobacterium, Agrobacterium tumefaciens (AtCinA). The enzyme was active over a broad pH range, with an optimum at pH 7.5. Moreover, the enzyme was quite stable at neutral pH, maintaining 55% of its activity after 14 days. Surprisingly, AtCinA showed the highest optimal (80°C) and melting (85°C) temperatures described for an NMN deamidase. The above described characteristics, together with its high catalytic efficiency, make AtCinA a promising biocatalyst for the production of pure NaMN. In addition, six mutants (C32A, S48A, Y58F, Y58A, T105A and R145A) were designed to study their involvement in substrate binding, and two (S31A and K63A) to determine their contribution to the catalysis. However, only four mutants (C32A, S48A Y58F and T105A) showed activity, although with reduced catalytic efficiency. These results, combined with a thermal and structural analysis, reinforce the Ser/Lys catalytic dyad mechanism as the most plausible among those proposed.
Asunto(s)
Agrobacterium tumefaciens/enzimología , Amidohidrolasas/metabolismo , Mutación , Secuencia de Aminoácidos , Catálisis , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Cinética , Homología de Secuencia de AminoácidoRESUMEN
Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain unclear, since mutation of the proposed catalytic aspartate does not completely abolish enzyme activity. Here, we present a functional and structural characterization of a macrodomain from the extremely halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiMacroD), related to hMacroD1/hMacroD2, shedding light on substrate binding and catalysis. The crystal structures of D40A, N30A and G37V mutants, and those with MES, ADPr and ADP bound, allowed us to identify five fixed water molecules that play a significant role in substrate binding. Closure of the ß6-α4 loop is revealed as essential not only for pyrophosphate recognition, but also for distal ribose orientation. In addition, a novel structural role for residue D40 is identified. Furthermore, it is revealed that OiMacroD not only catalyses the hydrolysis of O-acetyl-ADP-ribose but also reverses protein mono-ADP-ribosylation. Finally, mutant G37V supports the participation of a substrate-coordinated water molecule in catalysis that helps to select the proper substrate conformation.
Asunto(s)
Bacillaceae/metabolismo , Proteínas Bacterianas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Agua/química , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Hidrólisis , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , O-Acetil-ADP-Ribosa/síntesis química , O-Acetil-ADP-Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Temperatura , Agua/metabolismoRESUMEN
Nicotinamidases catalyze the hydrolysis of the amide bond in nicotinamide (NAM) to produce ammonia and nicotinic acid (NA). These enzymes are an essential component of the NAD+ salvage pathway and are implicated in the viability of several pathogenic organisms. Its absence in humans makes them a promising drug target. In addition, although they are key analytical biocatalysts for screening modulators in relevant biomedical enzymes, such as sirtuins and poly-ADP-ribosyltransferases, no commercial sources are available. Surprisingly, the finding of an affordable source of nicotinamidase from metagenomic libraries is hindered by the absence of a suitable and fast screening method. In this manuscript, we describe the development of two new whole-cell methods using the chemical property of one of the products formed in the enzymatic reaction (pyrazinoic or NA) to form colored complexes with stable iron salts, such as ammonium ferrous sulfate or sodium nitroprusside (SNP). After optimization of the assay conditions, a fosmid polygenomic expression library obtained from deep-sea mesophilic bacteria was screened, discovering several positive clones with the ammonium ferrous sulfate method. Their quantitative rescreening with the SNP method allowed the finding of the first nicotinamidase with balanced catalytic efficiency toward NAM (nicotinamidase activity) and pyrazinamide (pyrazinamidase activity). Its biochemical characterization has also made possible the development of the first high-throughput whole-cell method for prescreening of new nicotinamidase inhibitors by the naked eye, saving time and costs in the design of future antimicrobial and antiparasitic agents.
RESUMEN
Inflammasomes are cytosolic molecular platforms that alert the immune system about the presence of infection. Here we report that zebrafish guanylate-binding protein 4 (Gbp4), an IFNγ-inducible GTPase protein harbouring a C-terminal CARD domain, is required for the inflammasome-dependent clearance of Salmonella Typhimurium (ST) by neutrophils in vivo. Despite the presence of the CARD domain, Gbp4 requires the universal inflammasome adaptor Asc for mediating its antibacterial function. In addition, the GTPase activity of Gbp4 is indispensable for inflammasome activation and ST clearance. Mechanistically, neutrophils are recruited to the infection site through the inflammasome-independent production of the chemokine (CXC motif) ligand 8 and leukotriene B4, and then mediate bacterial clearance through the Gbp4 inflammasome-dependent biosynthesis of prostaglandin D2. Our results point to GBPs as key inflammasome adaptors required for prostaglandin biosynthesis and bacterial clearance by neutrophils and suggest that transient activation of the inflammasome may be used to treat bacterial infections.
Asunto(s)
Proteínas de Unión al GTP/inmunología , Inflamasomas/inmunología , Neutrófilos/inmunología , Prostaglandina D2/biosíntesis , Animales , Dominio de Reclutamiento y Activación de Caspasas , Interleucina-8/inmunología , Leucotrieno B4/inmunología , Morfolinos , Organismos Modificados Genéticamente , Prostaglandinas/inmunología , Salmonella typhimurium , Pez CebraRESUMEN
Seminal plasma (SP) proteins support the survival of spermatozoa acting not only at the plasma membrane but also by inhibition of capacitation, resulting in higher fertilizing ability. Among SP proteins, BSP (binder of sperm) proteins are the most studied, since they may be useful for the improvement of semen diluents, storage and subsequent fertilization results. However, an updated and detailed phylogenetic analysis of the BSP protein superfamily has not been carried out with all the sequences described in the main databases. The update view shows for the first time an equally distributed number of sequences between the three families: BSP, and their homologs 1 (BSPH1) and 2 (BSPH2). The BSP family is divided in four subfamilies, BSP1 subfamily being the predominant, followed by subfamilies BSP3, BSP5 and BSP2. BSPH proteins were found among placental mammals (Eutheria) belonging to the orders Proboscidea, Primates, Lagomorpha, Rodentia, Chiroptera, Perissodactyla and Cetartiodactyla. However, BSPH2 proteins were also found in the Scandentia order and Metatheria clade. This phylogenetic analysis, when combined with a gene context analysis, showed a completely new evolutionary scenario for the BSP superfamily of proteins with three defined different gene patterns, one for BSPs, one for BSPH1/BSPH2/ELSPBP1 and another one for BSPH1/BSPH2 without ELSPBP1. In addition, the study has permitted to define concise conserved blocks for each family (BSP, BSPH1 and BSPH2), which could be used for a more reliable assignment for the incoming sequences, for data curation of current databases, and for cloning new BSPs, as the one described in this paper, ram seminal vesicle 20 kDa protein (RSVP20, Ovis aries BSP5b).
Asunto(s)
Filogenia , Proteínas de Secreción de la Vesícula Seminal/clasificación , Proteínas de Secreción de la Vesícula Seminal/genética , Espermatozoides/metabolismo , Secuencia de Aminoácidos , Animales , Masculino , Datos de Secuencia Molecular , Unión Proteica , Proteínas de Secreción de la Vesícula Seminal/químicaRESUMEN
N-Acetylneuraminate lyase synthase (NeuB; E.C. 2.5.1.56) is a key enzyme in pathogenic microorganisms for producing N-acetylneuraminic acid through the irreversible condensation of N-acetylmannosamine (ManNAc) and phosphoenolpyruvate (PEP). However, nothing is known about this enzyme in non-pathogenic bacteria. This paper describes, for the first time, one of the two putative N-acetylneuraminate synthases from the halophilic non-pathogenic gamma-proteobacterium Idiomarina loihiensis NeuB1 (IlNeuB1). The obtained 95-kDa dimeric enzyme showed maximal activity at pH 7.0 and 40°C and was more stable at pH 8.0 (8 h half-life) than the previously described NeuB. Its catalytic efficiency towards ManNAc and PEP was 10- and 40-fold higher, respectively, than that determined for Campylobacter jejuni NeuB, but only half that found for Neisseria meningitidis NeuB towards PEP. The phylogenetic and structural analyses of NeuB enzymes revealed the new domain architecture 4 has no cystathionine-ß-synthase domain (cystathionine-ß-synthetase domain), unlike domain architecture 3. In addition, 10 conserved blocks (I-X) were found, and surprisingly, this study showed that the arginine essential for catalysis that is present in antifreeze-like domain (block X) was not fully conserved in NeuB, but is replaced by a serine in a long sequence (>700 residues) NeuB, such as that existing in domain architectures 3 and 4.
Asunto(s)
Alteromonadaceae/química , Proteínas Bacterianas/química , Hexosaminas/química , Oxo-Ácido-Liasas/química , Fosfoenolpiruvato/química , Alteromonadaceae/clasificación , Alteromonadaceae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Campylobacter jejuni/química , Campylobacter jejuni/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Semivida , Hexosaminas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Neisseria meningitidis/química , Neisseria meningitidis/enzimología , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , Fosfoenolpiruvato/metabolismo , Filogenia , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad de la Especie , Especificidad por SustratoRESUMEN
NAMDH (N-acetyl-D-mannosamine dehydrogenase), from the soil bacteroidete Flavobacterium sp. 141-8, catalyses a rare NAD+-dependent oxidation of ManNAc (N-acetyl-D-mannosamine) into N-acetylmannosamino-lactone, which spontaneously hydrolyses into N-acetylmannosaminic acid. NAMDH belongs to the SDR (short-chain dehydrogenase/reductase) superfamily and is the only NAMDH characterized to date. Thorough functional, stability, site-directed mutagenesis and crystallographic studies have been carried out to understand better the structural and biochemical aspects of this unique enzyme. NAMDH exhibited a remarkable alkaline pH optimum (pH 9.4) with a high thermal stability in glycine buffer (Tm=64°C) and a strict selectivity towards ManNAc and NAD+. Crystal structures of ligand-free and ManNAc- and NAD+-bound enzyme forms revealed a compact homotetramer having point 222 symmetry, formed by subunits presenting the characteristic SDR α3ß7α3 sandwich fold. A highly developed C-terminal tail used as a latch connecting nearby subunits stabilizes the tetramer. A dense network of polar interactions with the substrate including the encasement of its acetamido group in a specific binding pocket and the hydrogen binding of the sugar 4OH atom ensure specificity for ManNAc. The NAMDH-substrate complexes and site-directed mutagenesis studies identify the catalytic tetrad and provide useful traits for identifying new NAMDH sequences.
Asunto(s)
Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Deshidrogenasas de Carbohidratos/genética , Catálisis , Cristalización , Cristalografía por Rayos X , Flavobacterium/enzimología , Flavobacterium/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Alineación de Secuencia , Especificidad por SustratoRESUMEN
N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1.