Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 25(8): 104820, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992058

RESUMEN

The MAP kinase Sty1 phosphorylates and activates the transcription factor Atf1 in response to several stress conditions, which then shifts from a transcriptional repressor to an activator. Atf1 also participates in heterochromatin assembly at the mat locus, in combination with the RNA interference (RNAi) machinery. Here, we study the role of signal-dependent phosphorylation of Atf1 in heterochromatin establishment at mat, using different Atf1 phospho mutants. Although a hypo-phosphorylation Atf1 mutant, Atf1.10M, mediates heterochromatin assembly, the phosphomimic Atf1.10D is unable to maintain silencing. In a minimal mat locus, lacking the RNAi-recruiting cis elements and displaying intermediate silencing, Atf1.10M restores full heterochromatin and silencing. However, evolution experiments with this stress-blinded Atf1.10M show that it is unable to facilitate switching between the donor site mat3 and mat1. We propose that the unphosphorylated, inactive Atf1 contributes to proper heterochromatin assembly by recruiting repressive complexes, but its stress-dependent phosphorylation is required for recombination/switching to occur.

2.
J Mol Biol ; 432(19): 5430-5446, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32795531

RESUMEN

Transcription factors are often the downstream effectors of signaling cascades. In fission yeast, the transcription factor Atf1 is phosphorylated by the MAP kinase Sty1 under several environmental stressors to promote transcription initiation of stress genes. However, Sty1 and Atf1 have also been involved in other cellular processes such as homologous recombination at hotspots, ste11 gene expression during mating and meiosis, or regulation of fbp1 gene transcription under glucose starvation conditions. Using different phospho-mutants of Atf1, we have investigated the role of Atf1 phosphorylation by Sty1 in those biological processes. An Atf1 mutant lacking the canonical MAP kinase phosphorylation sites cannot activate fbp1 transcription when glucose is depleted, but it is still able to induce recombination at ade6.M26 and to induce ste11 after nitrogen depletion; in these last cases, Sty1 is still required, suggesting that additional non-canonical sites are activating the transcription factor. In all cases, an Atf1 phosphomimetic mutant bypasses the requirement of the Sty1 kinase in these diverse biological processes, highlighting the essential role of the DNA binding factor Atf1 on chromatin remodeling and cell adaptation to nutritional changes. We propose that post-translational modifications of Atf1 by Sty1, either at canonical or non-canonical sites, are sufficient to activate some of the functions of Atf1, those involving chromatin remodeling and transcription initiation. However, in the case of fbp1 where Atf1 acts synergistically with other transcription factors, elimination of the canonical sites is sufficient to hamper some of the interactions required in this complex scenario and to impair transcription initiation.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Recombinación Homóloga , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factor de Transcripción Activador 1/genética , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fosfoproteínas/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Activación Transcripcional
3.
FEBS J ; 287(5): 874-877, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31777167

RESUMEN

Survival upon glucose starvation requires a delicate balance between different metabolic pathways. A recent work by the Roe laboratory provides a mechanistic link between glucose deprivation and the regulation of the pentose phosphate pathway, with the transcriptional repressor Rsv1 playing a key role in the process. Rsv1 regulates the flow of glucose into its possible metabolic fates and promotes long-term survival under low glucose.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Unión al ADN , Gluconatos , Glucosa , Vía de Pentosa Fosfato , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Curr Genet ; 64(1): 97-102, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28799013

RESUMEN

Stress-dependent activation of signaling cascades is often mediated by phosphorylation events, but the exact nature and role of these phosphorelays are frequently poorly understood. Here, we review which are the consequences of the stress-dependent phosphorylation of a transcription factor on gene activation. In fission yeast, the MAP kinase Sty1 is activated upon several environmental hazards and promotes cell adaptation and survival, greatly through activation of a gene program mediated by the transcription factor Atf1. Although described decades ago, the role of the phosphorylation of Atf1 by Sty1 is still a matter of debate. We present here a brief review of recent data, obtained through the characterization of several phosphorylation mutant derivatives of Atf1, demonstrating that Atf1 phosphorylation does not stabilize the factor nor stimulates its binding to DNA. Rather, it provides a structural platform of interaction with the transcriptional machinery. Based on these findings, future work will establish how this phosphorylated trans-activation domain promotes the massive gene expression shift allowing cellular adaptation to stress.


Asunto(s)
Factor de Transcripción Activador 1/genética , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosfoproteínas/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Activación Transcripcional , Factor de Transcripción Activador 1/metabolismo , Estrés Oxidativo , Fosfoproteínas/metabolismo , Fosforilación , Estrés Fisiológico/genética
5.
J Biol Chem ; 292(33): 13635-13644, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28652406

RESUMEN

Adaptation to stress triggers the most dramatic shift in gene expression in fission yeast (Schizosaccharomyces pombe), and this response is driven by signaling via the MAPK Sty1. Upon activation, Sty1 accumulates in the nucleus and stimulates expression of hundreds of genes via the nuclear transcription factor Atf1, including expression of atf1 itself. However, the role of stress-induced, Sty1-mediated Atf1 phosphorylation in transcriptional activation is unclear. To this end, we expressed Atf1 phosphorylation mutants from a constitutive promoter to uncouple Atf1 activity from endogenous, stress-activated Atf1 expression. We found that cells expressing a nonphosphorylatable Atf1 variant are sensitive to oxidative stress because of impaired transcription of a subset of stress genes whose expression is also controlled by another transcription factor, Pap1. Furthermore, cells expressing a phospho-mimicking Atf1 mutant display enhanced stress resistance, and although expression of the Pap1-dependent genes still relied on stress induction, another subset of stress-responsive genes was constitutively expressed in these cells. We also observed that, in cells expressing the phospho-mimicking Atf1 mutant, the presence of Sty1 was completely dispensable, with all stress defects of Sty1-deficient cells being suppressed by expression of the Atf1 mutant. We further demonstrated that Sty1-mediated Atf1 phosphorylation does not stimulate binding of Atf1 to DNA but, rather, establishes a platform of interactions with the basal transcriptional machinery to facilitate transcription initiation. In summary, our results provide evidence that Atf1 phosphorylation by the MAPK Sty1 is required for oxidative stress responses in fission yeast cells by promoting transcription initiation.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Activación Transcripcional , Factor de Transcripción Activador 1/química , Factor de Transcripción Activador 1/genética , Sustitución de Aminoácidos , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Viabilidad Microbiana , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Estrés Oxidativo , Proteínas Asociadas a Pancreatitis , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Regiones Promotoras Genéticas , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo
6.
J Cell Sci ; 128(2): 266-80, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25416816

RESUMEN

The fission yeast protein kinase C (PKC) ortholog Pck2 controls cell wall synthesis and is a major upstream activator of the cell integrity pathway (CIP) and its core component, the MAP kinase Pmk1 (also known as Spm1), in response to environmental stimuli. We show that in vivo phosphorylation of Pck2 at the conserved T842 activation loop during growth and in response to different stresses is mediated by the phosphoinositide-dependent kinase (PDK) ortholog Ksg1 and an autophosphorylation mechanism. However, T842 phosphorylation is not essential for Pmk1 activation, and putative phosphorylation at T846 might play an additional role in Pck2 catalytic activation and downstream signaling. These events, together with turn motif autophosphorylation at T984 and binding to small GTPases Rho1 and/or Rho2, stabilize Pck2 and render it competent to exert its biological functions. Remarkably, the target of rapamycin complex 2 (TORC2) does not participate in the catalytic activation of Pck2, but instead contributes to de novo Pck2 synthesis, which is essential to activate the CIP in response to cell wall damage or glucose exhaustion. These results unveil a novel mechanism whereby TOR regulates PKC function at a translational level, and they add a new regulatory layer to MAPK signaling cascades.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteína Quinasa C/genética , Proteínas Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Ciclo Celular/genética , Pared Celular/genética , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Fosforilación/genética , Proteína Quinasa C/biosíntesis , Proteínas Quinasas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión al GTP rho/metabolismo
7.
Mol Cell Biol ; 34(14): 2745-59, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24820419

RESUMEN

The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade.


Asunto(s)
Aciltransferasas/metabolismo , Membrana Celular/metabolismo , Cisteína/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Lipoilación , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Unión al GTP rho/química
8.
PLoS One ; 9(1): e88020, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498240

RESUMEN

In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2. However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1 drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared to similar routes from other simple eukaryotic organisms.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Quinasa C/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Unión al GTP rho/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteína Quinasa C/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Unión al GTP rho/genética
9.
BMC Microbiol ; 13: 34, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23398982

RESUMEN

BACKGROUND: Glucose is a signaling molecule which regulates multiple events in eukaryotic organisms and the most preferred carbon source in the fission yeast Schizosaccharomyces pombe. The ability of this yeast to grow in the absence of glucose becomes strongly limited due to lack of enzymes of the glyoxylate cycle that support diauxic growth. The stress-activated protein kinase (SAPK) pathway and its effectors, Sty1 MAPK and transcription factor Atf1, play a critical role in the adaptation of fission yeast to grow on alternative non-fermentable carbon sources by inducing the expression of fbp1+ gene, coding for the gluconeogenic enzyme fructose-1,6-bisphosphatase. The cell integrity Pmk1 pathway is another MAPK cascade that regulates various processes in fission yeast, including cell wall construction, cytokinesis, and ionic homeostasis. Pmk1 pathway also becomes strongly activated in response to glucose deprivation but its role during glucose exhaustion and ensuing adaptation to respiratory metabolism is currently unknown. RESULTS: We found that Pmk1 activation in the absence of glucose takes place only after complete depletion of this carbon source and that such activation is not related to an endogenous oxidative stress. Notably, Pmk1 MAPK activation relies on de novo protein synthesis, is independent on known upstream activators of the pathway like Rho2 GTPase, and involves PKC ortholog Pck2. Also, the Glucose/cAMP pathway is required operative for full activation of the Pmk1 signaling cascade. Mutants lacking Pmk1 displayed a partial growth defect in respiratory media which was not observed in the presence of glucose. This phenotype was accompanied by a decreased and delayed expression of transcription factor Atf1 and target genes fbp1+ and pyp2+. Intriguingly, the kinetics of Sty1 activation in Pmk1-less cells was clearly altered during growth adaptation to non-fermentable carbon sources. CONCLUSIONS: Unknown upstream elements mediate Pck2-dependent signal transduction of glucose withdrawal to the cell integrity MAPK pathway. This signaling cascade reinforces the adaptive response of fission yeast to such nutritional stress by enhancing the activity of the SAPK pathway.


Asunto(s)
Glucosa/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transducción de Señal , Estrés Fisiológico , Regulación Fúngica de la Expresión Génica
10.
J Biol Chem ; 287(31): 26038-51, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22685296

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.


Asunto(s)
Núcleo Celular/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , División Celular , Pared Celular/metabolismo , Cloruros/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Fusión de Membrana , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Estrés Fisiológico , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA