RESUMEN
In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Haplotipos/genética , Proteínas de Dominio MADS , Estaciones del Año , Arabidopsis/fisiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación hacia Abajo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Dominio MADS/análisis , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación/genética , Suecia , Reino UnidoRESUMEN
In a search for slowly evolving nuclear genes that may cast light on the deep evolution of plants, we carried out phylogenetic analyses of two well-characterized subfamilies of P-type pumps (P2A and P5A ATPases) from representative branches of the eukaryotic tree of life. Both P-type ATPase genes were duplicated very early in eukaryotic evolution and before the divergence of the present eukaryotic supergroups. Synapomorphies identified in the sequences provide evidence that green plants and red algae are more distantly related than are green plants and eukaryotic supergroups in which secondary or tertiary plastids are common, such as several groups belonging to the clade that includes Stramenopiles, Alveolata, Rhizaria, Cryptophyta and Haptophyta (SAR). We propose that red algae branched off soon after the first photosynthesizing eukaryote had acquired a primary plastid, while in another lineage that led to SAR, the primary plastid was lost but, in some cases, regained as a secondary or tertiary plastid.
Asunto(s)
Adenosina Trifosfatasas/genética , Evolución Biológica , Duplicación de Gen , Proteínas de Plantas/genética , Rhodophyta/genética , Viridiplantae/genética , Filogenia , PlastidiosRESUMEN
The fresh-water cyanobacterium Microcystis is known to form blooms world-wide, and is often responsible for the production of microcystins found in lake water. Microcystins are non-ribosomal peptides with toxic effects, e.g. on vertebrates, but their function remains largely unresolved. Moreover, not all strains produce microcystins, and many different microcystin variants have been described. Here we explored the diversity of microcystin variants within Microcystis botrys, a common bloom-former in Sweden. We isolated a total of 130 strains through the duration of a bloom in eutrophic Lake Vomb, and analyzed their microcystin profiles with tandem mass spectrometry (LC-MS/MS). We found that microcystin producing (28.5%) and non-producing (71.5%) M. botrys strains, co-existed throughout the bloom. However, microcystin producing strains were more prevalent towards the end of the sampling period. Overall, 26 unique M. botrys chemotypes were identified, and while some chemotypes re-occurred, others were found only once. The M. botrys chemotypes showed considerable variation both in terms of number of microcystin variants, as well as in what combinations the variants occurred. To our knowledge, this is the first report on microcystin chemotype variation and dynamics in M. botrys. In addition, our study verifies the co-existence of microcystin and non-microcystin producing strains, and we propose that environmental conditions may be implicated in determining their composition.
Asunto(s)
Microcistinas/análisis , Microcystis/aislamiento & purificación , Monitoreo del Ambiente , Eutrofización , Lagos/química , Lagos/microbiología , Estaciones del Año , SueciaRESUMEN
The yeast Candida glabrata is a major opportunistic pathogen causing mucosal and systemic infections in humans. Systemic infections caused by this yeast have high mortality rates and are difficult to treat due to this yeast's intrinsic and frequently adapting antifungal resistance. To understand and treat C. glabrata infections, it is essential to investigate the molecular basis of C. glabrata virulence and resistance. We established an RNA interference (RNAi) system in C. glabrata by expressing the Dicer and Argonaute genes from Saccharomyces castellii (a budding yeast with natural RNAi). Our experiments with reporter genes and putative virulence genes showed that the introduction of RNAi resulted in 30 and 70% gene-knockdown for the construct-types antisense and hairpin, respectively. The resulting C. glabrata RNAi strain was used for the screening of a gene library for new virulence-related genes. Phenotypic profiling with a high-resolution quantification of growth identified genes involved in the maintenance of cell integrity, antifungal drugs, and ROS resistance. The genes identified by this approach are promising targets for the treatment of C. glabrata infections.
RESUMEN
Because of their symbiotic origin, many mitochondrial proteins are well conserved across eukaryotic kingdoms. It is however less obvious how specific lineages have obtained novel nuclear-encoded mitochondrial proteins. Here, we report a case of mitochondrial neofunctionalization in plants. Phylogenetic analysis of genes containing the Domain of Unknown Function 295 (DUF295) revealed that the domain likely originated in Angiosperms. The C-terminal DUF295 domain is usually accompanied by an N-terminal F-box domain, involved in ubiquitin ligation via binding with ASK1/SKP1-type proteins. Due to gene duplication, the gene family has expanded rapidly, with 94 DUF295-related genes in Arabidopsis thaliana alone. Two DUF295 family subgroups have uniquely evolved and quickly expanded within Brassicaceae. One of these subgroups has completely lost the F-box, but instead obtained strongly predicted mitochondrial targeting peptides. We show that several representatives of this DUF295 Organellar group are effectively targeted to plant mitochondria and chloroplasts. Furthermore, many DUF295 Organellar genes are induced by mitochondrial dysfunction, whereas F-Box DUF295 genes are not. In agreement, several Brassicaceae-specific DUF295 Organellar genes were incorporated in the evolutionary much older ANAC017-dependent mitochondrial retrograde signaling pathway. Finally, a representative set of DUF295 T-DNA insertion mutants was created. No obvious aberrant phenotypes during normal growth and mitochondrial dysfunction were observed, most likely due to the large extent of gene duplication and redundancy. Overall, this study provides insight into how novel mitochondrial proteins can be created via "intercompartmental" gene duplication events. Moreover, our analysis shows that these newly evolved genes can then be specifically integrated into relevant, pre-existing coexpression networks.
Asunto(s)
Arabidopsis/genética , Duplicación de Gen , Proteínas Mitocondriales/genética , Familia de Multigenes , Análisis Mutacional de ADN , ADN Bacteriano , Proteínas F-Box/genética , Expresión Génica , Genoma de Planta , Mutagénesis Insercional , Proteínas de Plantas/genética , Transducción de SeñalRESUMEN
Many organisms need to respond to complex, noisy environmental signals for developmental decision making. Here, we dissect how Arabidopsis plants integrate widely fluctuating field temperatures over month-long timescales to progressively upregulate VERNALIZATION INSENSITIVE3 (VIN3) and silence FLOWERING LOCUS C (FLC), aligning flowering with spring. We develop a mathematical model for vernalization that operates on multiple timescales-long term (month), short term (day), and current (hour)-and is constrained by experimental data. Our analysis demonstrates that temperature sensing is not localized to specific nodes within the FLC network. Instead, temperature sensing is broadly distributed, with each thermosensory process responding to specific features of the plants' history of exposure to warm and cold. The model accurately predicts FLC silencing in new field data, allowing us to forecast FLC expression in changing climates. We suggest that distributed thermosensing may be a general property of thermoresponsive regulatory networks in complex natural environments.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Factores de Transcripción/genética , Arabidopsis/fisiología , Cambio Climático , Flores/genética , Flores/fisiología , Redes Reguladoras de Genes , Modelos Biológicos , Estaciones del Año , Sensación TérmicaRESUMEN
Plants integrate widely fluctuating temperatures to monitor seasonal progression. Here, we investigate the temperature signals in field conditions that result in vernalisation, the mechanism by which flowering is aligned with spring. We find that multiple, distinct aspects of the temperature profile contribute to vernalisation. In autumn, transient cold temperatures promote transcriptional shutdown of Arabidopsis FLOWERING LOCUS C (FLC), independently of factors conferring epigenetic memory. As winter continues, expression of VERNALIZATION INSENSITIVE3 (VIN3), a factor needed for epigenetic silencing, is upregulated by at least two independent thermosensory processes. One integrates long-term cold temperatures, while the other requires the absence of daily temperatures above 15 °C. The lack of spikes of high temperature, not just prolonged cold, is thus the major driver for vernalisation. Monitoring of peak daily temperature is an effective mechanism to judge seasonal progression, but is likely to have deleterious consequences for vernalisation as the climate becomes more variable.
Asunto(s)
Arabidopsis/genética , Epigénesis Genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ecosistema , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Organisms have evolved the ability to tolerate toxic substances in their environments, often by producing metabolic enzymes that efficiently detoxify the toxicant. Inorganic arsenic is one of the most toxic and carcinogenic substances in the environment, but many organisms, including humans, metabolise inorganic arsenic to less toxic metabolites. This multistep process produces mono-, di-, and trimethylated arsenic metabolites, which the organism excretes. In humans, arsenite methyltransferase (AS3MT) appears to be the main metabolic enzyme that methylates arsenic. In this study, we examined the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic during evolution. These findings are supported by the observation that genetic variation in AS3MT correlates with the capacity to methylate arsenic. Adaptation to arsenic thus serves as a model for how organisms evolve to survive under toxic conditions.
Asunto(s)
Arsénico/toxicidad , Transferencia de Gen Horizontal , Metiltransferasas/metabolismo , Arsénico/metabolismo , Eucariontes/metabolismo , FilogeniaRESUMEN
Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.
Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Especiación Genética , Secuencia de Bases/genética , Variación Genética/genética , Genoma/genética , Genoma de Planta/genética , Filogenia , Poliploidía , Autofecundación/genética , Análisis de Secuencia de ADN/métodos , TetraploidíaRESUMEN
The notion of species as reproductively isolated units related through a bifurcating tree implies that gene trees should generally agree with the species tree and that sister taxa should not share polymorphisms unless they diverged recently and should be equally closely related to outgroups. It is now possible to evaluate this model systematically. We sequenced multiple individuals from 27 described taxa representing the entire Arabidopsis genus. Cluster analysis identified seven groups, corresponding to described species that capture the structure of the genus. However, at the level of gene trees, only the separation of Arabidopsis thaliana from the remaining species was universally supported, and, overall, the amount of shared polymorphism demonstrated that reproductive isolation was considerably more recent than the estimated divergence times. We uncovered multiple cases of past gene flow that contradict a bifurcating species tree. Finally, we showed that the pattern of divergence differs between gene ontologies, suggesting a role for selection.
Asunto(s)
Arabidopsis/clasificación , Arabidopsis/genética , Flujo Génico/genética , Genes de Plantas/genética , Especiación Genética , Polimorfismo Genético/genéticaRESUMEN
Genetic studies of chronic rhinosinusitis (CRS) have identified a total of 53 CRS-associated SNPs that were subsequently evaluated for their reproducibility in a recent study. The rs2873551 SNP in linkage disequilibrium with PARS2 showed the strongest association signal. The present study aims to comprehensively screen for rare variants in PARS2 and evaluate for accumulation of such variants in CRS-patients. Sanger sequencing and long-range PCR were used to screen for rare variants in the putative promoter region and coding sequence of 310 CRS-patients and a total of 21 variants were detected. The mutation spectrum was then compared with data from European populations of the 1000Genomes project (EUR) and the Exome Aggregation Consortium (ExAC). The CRS population showed a significant surplus of low-frequency variants compared with ExAC data. Haplotype analysis of the region showed a significant excess of rare haplotypes in the CRS population compared to the EUR population. Two missense mutations were also genotyped in the 310 CRS patients and 372 CRS-negative controls, but no associations with the disease were found. This is the first re-sequencing study in CRS research and also the first study to show an association of rare variants with the disease.
Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Predisposición Genética a la Enfermedad , Variación Genética , Rinitis/genética , Sinusitis/genética , Adulto , Anciano , Alelos , Enfermedad Crónica , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Población BlancaRESUMEN
Many recent studies have found genetically differentiated populations in microorganisms despite potentially high dispersal. We designed a study to specifically examine the importance of physical dispersal barriers, i.e. geographic distance and lack of hydrological connectivity, in restricting gene flow and enhancing divergence in limnic microorganisms. We focused on the nuisance microalga Gonyostomum semen, which has recently expanded in Northern Europe and differentiated into genetically distinct populations. G. semen was sampled from six lakes distributed in two adjacent watersheds, which thereby comprised, both connected and non-connected lakes. The individual isolates were genotyped by amplified fragment length polymorphism. Several lake populations were differentiated from each other, but connectivity within watersheds could not explain the observed population genetic pattern. However, isolation by distance was moderate and might limit the gene flow among distant populations. In addition, we found low, but significant linkage disequilibrium, which indicates regular sexual recombination in this species, despite its high degree of asexual reproduction. Therefore, we conclude that the genetic properties of microalgae with occasional sexual reproduction essentially mirror regularly recombining species. Furthermore, the data indicated bottlenecks supporting the hypothesized recent range expansion of this species.
Asunto(s)
Organismos Acuáticos/genética , Genética de Población , Lagos , Estramenopilos/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Europa (Continente) , Flujo Génico , Genotipo , Desequilibrio de Ligamiento/genética , Polimorfismo Genético , Estramenopilos/aislamiento & purificaciónRESUMEN
The short-term Crabtree effect is defined as the immediate occurrence of aerobic alcoholic fermentation in response to provision of a pulse of excess sugar to sugar-limited yeast cultures. Here we have characterized ten yeast species with a clearly defined phylogenetic relationship. Yeast species were cultivated under glucose-limited conditions, and we studied their general carbon metabolism in response to a glucose pulse. We generated an extensive collection of data on glucose and oxygen consumption, and ethanol and carbon dioxide generation. We conclude that the Pichia, Debaryomyces, Eremothecium and Kluyveromyces marxianus yeasts do not exhibit any significant ethanol formation, while Kluyveromyces lactis behaves as an intermediate yeast, and Lachancea, Torulaspora, Vanderwaltozyma and Saccharomyces yeasts exhibit rapid ethanol accumulation. Based on the present data and our previous data relating to the presence of the long-term Crabtree effect in over 40 yeast species, we speculate that the origin of the short-term effect may coincide with the origin of the long-term Crabtree effect in the Saccharomycetales lineage, occurring ~ 150 million years ago.
Asunto(s)
Aerobiosis/fisiología , Fermentación/fisiología , Glucosa/farmacología , Saccharomycetales/metabolismo , Biomasa , Reactores Biológicos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Medios de Cultivo/farmacología , Etanol/metabolismo , Evolución Molecular , Consumo de Oxígeno , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/efectos de los fármacos , Saccharomycetales/crecimiento & desarrollo , Especificidad de la Especie , Factores de TiempoRESUMEN
BACKGROUND: Genetic variants in KLK2 and KLK3 have been associated with increased serum concentrations of their encoded proteins, human kallikrein-related peptidase 2 (hK2) and prostate-specific antigen (PSA), and with prostate cancer in older men. Low PSA concentrations in seminal plasma (SP) have been associated with low sperm motility. To evaluate whether KLK2 and KLK3 genetic variants affect physiological prostatic secretion, we studied the association of SNPs with hK2 and PSA concentrations in SP and serum of young, healthy men. METHODS: Leukocyte DNA was extracted from 303 male military conscripts (median age 18.1 years). Nine SNPs across KLK2-KLK3 were genotyped. We measured PSA and hK2 in SP and serum using immunofluorometric assays. The association of genotype frequencies with hK2 and PSA concentrations was tested with the Kruskal-Wallis test. RESULTS: Four KLK2 SNPs (rs198972, rs198977, rs198978, and rs80050017) were strongly associated with hK2 concentrations in SP and serum, with individuals homozygous for the major alleles having 3- to 7-fold higher concentrations than the intermediate concentrations found in other homozygotes and heterozygotes (all P < 0.001). Three of these SNPs were significantly associated with percentage of free PSA (%fPSA) in serum (all P < 0.007). Three KLK3 SNPs showed associations with PSA in SP, and the rs1058205 SNP was associated with total PSA in serum (P = 0.001) and %fPSA (P = 0.015). CONCLUSIONS: Associations observed in young, healthy men between the SP and serum concentrations of hK2 and PSA and several genetic variants in KLK2 and KLK3 could be useful to refine models of PSA cutoff values in prostate cancer testing.
Asunto(s)
Calicreínas/genética , Antígeno Prostático Específico/genética , Semen/enzimología , Adolescente , Estudios de Asociación Genética , Humanos , Calicreínas/análisis , Masculino , Polimorfismo de Nucleótido Simple , Antígeno Prostático Específico/análisis , Valores de Referencia , Suero , Calicreínas de Tejido/análisis , Calicreínas de Tejido/genética , Adulto JovenAsunto(s)
Hipersensibilidad/genética , Pólipos Nasales/genética , Rinitis/genética , Sinusitis/genética , Enfermedad Crónica , Factores de Confusión Epidemiológicos , Femenino , Frecuencia de los Genes , Interacción Gen-Ambiente , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Hipersensibilidad/epidemiología , Inmunidad Innata/genética , Masculino , Pólipos Nasales/epidemiología , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Reproducibilidad de los Resultados , Rinitis/epidemiología , Sinusitis/epidemiologíaRESUMEN
When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker's yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.
Asunto(s)
Evolución Molecular , Genoma Fúngico , Saccharomycetales/fisiología , Carbono/metabolismo , Fermentación , Glucosa/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismoRESUMEN
The kallikrein gene family (KLK1-KLK15) is the largest contiguous group of protease genes within the human genome and is associated with both risk and outcome of cancer and other diseases. We searched for copy number variants in all KLK genes using quantitative PCR analysis and analysis of inheritance patterns of single nucleotide polymorphisms. Two deletions were identified: one 2235-bp deletion in KLK9 present in 1.2% of alleles, and one 3394-bp deletion in KLK15 present in 4.0% of alleles. Each deletion eliminated one complete exon and created out-of-frame coding that eliminated the catalytic triad of the resulting truncated gene product, which therefore likely is a non-functional protein. Deletion breakpoints identified by DNA sequencing located the KLK9 deletion breakpoint to a long interspersed element (LINE) repeated sequence, while the deletion in KLK15 is located in a single copy sequence. To search for an association between each deletion and risk of prostate cancer (PC), we analyzed a cohort of 667 biopsied men (266 PC cases and 401 men with no evidence of PC at biopsy) using short deletion-specific PCR assays. There was no association between evidence of PC in this cohort and the presence of either gene deletion. Haplotyping revealed a single origin of each deletion, with most recent common ancestor estimates of 3000-8000 and 6000-14 000 years for the deletions in KLK9 and KLK15, respectively. The presence of the deletions on the same haplotypes in 1000 Genomes data of both European and African populations indicate an early origin of both deletions. The old age in combination with homozygous presence of loss-of-function variants suggests that some kallikrein-related peptidases have non-essential functions.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Calicreínas/genética , Familia de Multigenes/genética , Secuencia de Bases , Estudios de Cohortes , Femenino , Marcadores Genéticos/genética , Haplotipos/genética , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Neoplasias de la Próstata/genética , Eliminación de Secuencia , Población Blanca/genéticaRESUMEN
BACKGROUND: Asthma genetics has been extensively studied and many genes have been associated with the development or severity of this disease. In contrast, the genetic basis of allergic rhinitis (AR) has not been evaluated as extensively. It is well known that asthma is closely related with AR since a large proportion of individuals with asthma also present symptoms of AR, and patients with AR have a 5-6 fold increased risk of developing asthma. Thus, the relevance of asthma candidate genes as predisposing factors for AR is worth investigating. The present study was designed to investigate if SNPs in highly replicated asthma genes are associated with the occurrence of AR. METHODS: A total of 192 SNPs from 21 asthma candidate genes reported to be associated with asthma in 6 or more unrelated studies were genotyped in a Swedish population with 246 AR patients and 431 controls. Genotypes for 429 SNPs from the same set of genes were also extracted from a Singapore Chinese genome-wide dataset which consisted of 456 AR cases and 486 controls. All SNPs were subsequently analyzed for association with AR and their influence on allergic sensitization to common allergens. RESULTS: A limited number of potential associations were observed and the overall pattern of P-values corresponds well to the expectations in the absence of an effect. However, in the tests of allele effects in the Chinese population the number of significant P-values exceeds the expectations. The strongest signals were found for SNPs in NPSR1 and CTLA4. In these genes, a total of nine SNPs showed P-values <0.001 with corresponding Q-values <0.05. In the NPSR1 gene some P-values were lower than the Bonferroni correction level. Reanalysis after elimination of all patients with asthmatic symptoms excluded asthma as a confounding factor in our results. Weaker indications were found for IL13 and GSTP1 with respect to sensitization to birch pollen in the Swedish population. CONCLUSIONS: Genetic variation in the majority of the highly replicated asthma genes were not associated to AR in our populations which suggest that asthma and AR could have less in common than previously anticipated. However, NPSR1 and CTLA4 can be genetic links between AR and asthma and associations of polymorphisms in NPSR1 with AR have not been reported previously.
Asunto(s)
Asma/genética , Replicación del ADN , Estudios de Asociación Genética/métodos , Rinitis Alérgica Estacional/genética , Alelos , Pueblo Asiatico/genética , Antígeno CTLA-4/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población/métodos , Genoma Humano , Gutatión-S-Transferasa pi/genética , Humanos , Interleucina-13/genética , Masculino , Fenotipo , Polen/efectos adversos , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Estaciones del Año , Singapur/epidemiología , Estadísticas no ParamétricasRESUMEN
Replication of reported associations is crucial to the investigation of complex disease. More than 100 SNPs have previously been reported as associated with allergic rhinitis (AR), but few of these have been replicated successfully. To investigate the general reproducibility of reported AR-associations in candidate gene studies, one Swedish (352 AR-cases, 709 controls) and one Singapore Chinese population (948 AR-cases, 580 controls) were analyzed using 49 AR-associated SNPs. The overall pattern of P-values indicated that very few of the investigated SNPs were associated with AR. Given published odds ratios (ORs) most SNPs showed high power to detect an association, but no correlations were found between the ORs of the two study populations or with published ORs. None of the association signals were in common to the two genome-wide association studies published in AR, indicating that the associations represent false positives or have much lower effect-sizes than reported.