Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(4): 266, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622118

RESUMEN

BH3-mimetics represent promising anti-cancer agents in tumors that rely on the anti-apoptotic function of B-Cell Lymphoma 2 (BCL2) proteins, particularly in leukemia and lymphoma cells primed for apoptosis. Mechanistically, BH3-mimetics may displace pro-apoptotic binding partners thus inducing BAX/BAK-mediated mitochondrial permeabilization followed by cytochrome c release, activation of the caspase cascade and apoptosis. Here, we describe a novel mode of caspase-independent cell death (CICD) induced by BH3-mimetics in a subset of diffuse large B-cell lymphoma (DLBCL) cells. Of note, rather than occurring via necroptosis, CICD induced immediately after mitochondrial permeabilization was associated with transcriptional reprogramming mediated by activation of c-Jun N-terminal Kinase (JNK) signaling and Activator Protein 1 (AP1). Thereby, CICD resulted in the JNK/AP1-mediated upregulation of inflammatory chemokines and increased migration of cytotoxic Natural Killer (NK) cells. Taken together, our study describes a novel mode of CICD triggered by BH3-mimetics that may alter the immune response towards dying cells.


Asunto(s)
Antineoplásicos , Linfoma de Células B Grandes Difuso , Humanos , Proteína X Asociada a bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Apoptosis , Antineoplásicos/farmacología , Caspasas , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Línea Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
Br J Cancer ; 129(10): 1667-1678, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37723317

RESUMEN

BACKGROUND: Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. METHODS: We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. RESULTS: In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-XL inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. CONCLUSIONS: These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma.


Asunto(s)
Antineoplásicos , Neuroblastoma , Niño , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Cisplatino/farmacología , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neuroblastoma/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis
3.
Cells ; 12(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980247

RESUMEN

Although the overall survival in pediatric rhabdomyosarcoma (RMS) has increased over the last decades, the most aggressive subtype of alveolar RMS is in dire need of novel treatment strategies. RMS cells evade cell death induction and immune control by increasing the expression of inhibitors of apoptosis proteins (IAPs), which can be exploited and targeted with stimulation with Smac mimetics. Here, we used the Smac mimetic BV6 to re-sensitize RMS spheroids to cell death, which increased killing induced by natural killer (NK) cells. Single BV6 treatment of RMS spheroids did not reduce spheroidal growth. However, we observed significant spheroidal decomposition upon BV6 pre-treatment combined with NK cell co-cultivation. Molecularly, IAPs s are rapidly degraded by BV6, which activates NF-κB signal transduction pathways in RMS spheroids. RNA sequencing analysis validated NF-κB activation and identified a plethora of BV6-regulated genes. Additionally, BV6 released caspases from IAP-mediated inhibition. Here, caspase-8 might play a major role, as knockdown experiments resulted in decreased NK cell-mediated attack. Taken together, we improved the understanding of the BV6 mechanism of RMS spheroid sensitization to cytotoxic immune cells, which could be suitable for the development of novel combinatory cellular immunotherapy with Smac mimetics.


Asunto(s)
Apoptosis , Rabdomiosarcoma , Niño , Humanos , Apoptosis/fisiología , FN-kappa B/metabolismo , Proteínas Reguladoras de la Apoptosis , Muerte Celular , Células Asesinas Naturales/metabolismo
4.
Cell Death Discov ; 8(1): 11, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013156

RESUMEN

The induction of apoptosis is a direct way to eliminate tumor cells and improve cancer therapy. Apoptosis is tightly controlled by the balance of pro- and antiapoptotic Bcl-2 proteins. BH3 mimetics neutralize the antiapoptotic function of Bcl-2 proteins and are highly promising compounds inducing apoptosis in several cancer entities including pediatric malignancies. However, the clinical application of BH3 mimetics in solid tumors is impeded by the frequent resistance to single BH3 mimetics and the anticipated toxicity of high concentrations or combination treatments. One potential avenue to increase the potency of BH3 mimetics is the development of immune cell-based therapies to counteract the intrinsic apoptosis resistance of tumor cells and sensitize them to immune attack. Here, we describe spheroid cultures of pediatric cancer cells that can serve as models for drug testing. In these 3D models, we were able to demonstrate that activated allogeneic Natural Killer (NK) cells migrated into tumor spheroids and displayed cytotoxicity against a wide range of pediatric cancer spheroids, highlighting their potential as anti-tumor effector cells. Next, we investigated whether treatment of tumor spheroids with subtoxic concentrations of BH3 mimetics can increase the cytotoxicity of NK cells. Notably, the cytotoxic effects of NK cells were enhanced by the addition of BH3 mimetics. Treatment with either the Bcl-XL inhibitor A1331852 or the Mcl-1 inhibitor S63845 increased the cytotoxicity of NK cells and reduced spheroid size, while the Bcl-2 inhibitor ABT-199 had no effect on NK cell-mediated killing. Taken together, this is the first study to describe the combination of BH3 mimetics targeting Bcl-XL or Mcl-1 with NK cell-based immunotherapy, highlighting the potential of BH3 mimetics in immunotherapy.

5.
Neoplasia ; 24(2): 109-119, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959030

RESUMEN

BH3 mimetics are promising novel anticancer therapeutics. By selectively inhibiting BCL-2, BCL-xL, or MCL-1 (i.e. ABT-199, A-1331852, S63845) they shift the balance of pro- and anti-apoptotic proteins in favor of apoptosis. As Bromodomain and Extra Terminal (BET) protein inhibitors promote pro-apoptotic rebalancing, we evaluated the potential of the BET inhibitor JQ1 in combination with ABT-199, A-1331852 or S63845 in rhabdomyosarcoma (RMS) cells. The strongest synergistic interaction was identified for JQ1/A-1331852 and JQ1/S63845 co-treatment, which reduced cell viability and long-term clonogenic survival. Mechanistic studies revealed that JQ1 upregulated BIM and NOXA accompanied by downregulation of BCL-xL, promoting pro-apoptotic rebalancing of BCL-2 proteins. JQ1/A-1331852 and JQ1/S63845 co-treatment enhanced this pro-apoptotic rebalancing and triggered BAK- and BAX-dependent apoptosis since a) genetic silencing of BIM, BAK or BAX, b) inhibition of caspase activity with zVAD.fmk and c) overexpression of BCL-2 all rescued JQ1/A-1331852- and JQ1/S63845-induced cell death. Interestingly, NOXA played a different role in both treatments, as genetic silencing of NOXA significantly rescued from JQ1/A-1331852-mediated apoptosis but not from JQ1/S63845-mediated apoptosis. In summary, JQ1/A-1331852 and JQ1/S63845 co-treatment represent new promising therapeutic strategies to synergistically trigger mitochondrial apoptosis in RMS.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Biomimética , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Rabdomiosarcoma
6.
J Mol Med (Berl) ; 100(3): 337-349, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34374809

RESUMEN

Due to their physiological role in removing damaged cells, natural killer (NK) cells represent ideal candidates for cellular immunotherapy in the treatment of cancer. Thereby, the cytotoxicity of NK cells is regulated by signals on both, the NK cells as well as the targeted tumor cells, and the interplay and balance of these signals determine the killing capacity of NK cells. One promising avenue in cancer treatment is therefore the combination of NK cell therapy with agents that either help to increase the killing capacity of NK cells or sensitize tumor cells to an NK cell-mediated attack. In this mini-review, we present different strategies that can be explored to unleash the potential of NK cell immunotherapy. In particular, we summarize how modulation of apoptosis signaling within tumor cells can be exploited to sensitize tumor cells to NK cell-mediated cytotoxicity.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Apoptosis , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Neoplasias/patología , Neoplasias/terapia
7.
Cancers (Basel) ; 13(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063813

RESUMEN

Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.

8.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807011

RESUMEN

The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible "off-the-shelf" therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.

9.
Cell Commun Signal ; 17(1): 90, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382980

RESUMEN

BACKGROUND: Binding of tumor necrosis factor (TNF) to TNF-receptor 1 (TNF-R1) can induce either cell survival or cell death. The selection between these diametrically opposed effects depends on the subcellular location of TNF-R1: plasma membrane retention leads to survival, while endocytosis leads to cell death. How the respective TNF-R1 associated signaling complexes are recruited to the distinct subcellular location is not known. Here, we identify palmitoylation of TNF-R1 as a molecular mechanism to achieve signal diversification. METHODS: Human monocytic U937 cells were analyzed. Palmitoylated proteins were enriched by acyl resin assisted capture (AcylRAC) and analyzed by western blot and mass spectrometry. Palmitoylation of TNF-R1 was validated by metabolic labeling. TNF induced depalmitoylation and involvement of APT2 was analyzed by enzyme activity assays, pharmacological inhibition and shRNA mediated knock-down. TNF-R1 palmitoylation site analysis was done by mutated TNF-R1 expression in TNF-R1 knock-out cells. Apoptosis (nuclear DNA fragmentation, caspase 3 assays), NF-κB activation and TNF-R1 internalization were used as biological readouts. RESULTS: We identify dynamic S-palmitoylation as a new mechanism that controls selective TNF signaling. TNF-R1 itself is constitutively palmitoylated and depalmitoylated upon ligand binding. We identified the palmitoyl thioesterase APT2 to be involved in TNF-R1 depalmitoylation and TNF induced NF-κB activation. Mutation of the putative palmitoylation site C248 interferes with TNF-R1 localization to the plasma membrane and thus, proper signal transduction. CONCLUSIONS: Our results introduce palmitoylation as a new layer of dynamic regulation of TNF-R1 induced signal transduction at a very early step of the TNF induced signaling cascade. Understanding the underlying mechanism may allow novel therapeutic options for disease treatment in future.


Asunto(s)
Lipoilación , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Línea Celular , Regulación de la Expresión Génica , Humanos , FN-kappa B/metabolismo , Transporte de Proteínas , Tioléster Hidrolasas/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2138-2146, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28765050

RESUMEN

Tumor Necrosis Factor Receptor 1 (TNF-R1) transmits various intracellular signaling cascades leading to diverse biological outcomes, ranging from proliferation, differentiation, survival to the induction of various forms of cell death (i.e. apoptosis, necrosis, necroptosis). These signaling pathways have to be tightly regulated. Proteolysis is an important regulatory mechanism in TNF-R1 pro-apoptotic as well as anti-apoptotic/pro-inflammatory signaling. Some key players in these signaling cascades are known (mainly the caspase-family of proteases and a previously unrecognized "lysosomal death pathway" involving cathepsins), however the interaction of proteases in the regulation of TNF signaling is still enigmatic. Ubiquitination of proteins, both non-degradative degradative, which either results in proteolytic degradation of target substrates or regulates their biological function, represents another layer of regulation in this signaling cascade. We and others found out that the differences in signal quality depend on the localization of the receptors. Plasma membrane resident receptors activate survival signals, while endocytosed receptors can induce cell death. In this article we will review the role of ubiquitination and proteolysis in these diverse events focusing on our own contributions to the lysosomal apoptotic pathway linked to the subcellular compartmentalization of TNF-R1. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Asunto(s)
Apoptosis/genética , Proteínas de la Membrana/genética , Proteolisis , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Endocitosis/genética , Humanos , Lisosomas/genética , Lisosomas/ultraestructura , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Ubiquitinación/genética
11.
Oncotarget ; 7(46): 75774-75789, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27716614

RESUMEN

During apoptosis induction by TNF, the extrinsic and intrinsic apoptosis pathways converge at the lysosomal-mitochondrial interface. Earlier studies showed that the lysosomal aspartic protease Cathepsin D (CtsD) cleaves Bid to tBid, resulting in the amplification of the initial apoptotic cascade via mitochondrial outer membrane permeabilization (MOMP).The goal of this study was to identify further targets for CtsD that might be involved in activation upon death receptor ligation. Using a proteomics screen, we identified the heat shock protein 90 (HSP90) to be cleaved by CtsD after stimulation of U937 or other cell lines with TNF, FasL and TRAIL. HSP90 cleavage corresponded to apoptosis sensitivity of the cell lines to the different stimuli. After mutation of the cleavage site, HSP90 partially prevented apoptosis induction in U937 and Jurkat cells. Overexpression of the cleavage fragments in U937 and Jurkat cells showed no effect on apoptosis, excluding a direct pro-apoptotic function of these fragments. Pharmacological inhibition of HSP90 with 17AAG boosted ligand mediated apoptosis by enhancing Bid cleavage and caspase-9 activation. Together, we demonstrated that HSP90 plays an anti-apoptotic role in death receptor signalling and that CtsD-mediated cleavage of HSP90 sensitizes cells for apoptosis. These findings identify HSP90 as a potential target for cancer therapy in combination with death ligands (e.g. TNF or TRAIL).


Asunto(s)
Apoptosis/efectos de los fármacos , Catepsina D/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Secuencia de Aminoácidos , Caspasas/metabolismo , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Humanos , Proteolisis/efectos de los fármacos , Proteómica/métodos , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...