Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 193: 114781, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560053

RESUMEN

The molecular basis for the signal transduction through the classical Cys-loop receptors (CLRs) has been delineated in great detail. The Zinc-Activated Channel (ZAC) constitutes a so far poorly elucidated fifth branch of the CLR superfamily, and in this study we explore the molecular mechanisms underlying ZAC signaling in Xenopus oocytes by two-electrode voltage clamp electrophysiology. In studies of chimeric receptors fusing either the extracellular domain (ECD) or the transmembrane/intracellular domain (TMD-ICD) of ZAC with the complementary domains of 5-HT3A serotonin or α1 glycine receptors, serotonin and Zn2+/H+ evoked robust concentration-dependent currents in 5-HT3A/ZAC- and ZAC/α1-Gly-expressing oocytes, respectively, suggesting that Zn2+ and protons activate ZAC predominantly through its ECD. The molecular basis for Zn2+-mediated ZAC signaling was probed further by introduction of mutations of His, Cys, Glu and Asp residues in this domain, but as none of the mutants tested displayed substantially impaired Zn2+ functionality compared to wild-type ZAC, the location of the putative Zn2+ binding site(s) in the ECD was not identified. Finally, the functional importance of Leu246 (Leu9') in the transmembrane M2 α-helix of ZAC was investigated by Ala, Val, Ile and Thr substitutions. In concordance with findings for this highly conserved residue in classical CLRs, the ZACL9'X mutants exhibited left-shifted agonist concentration-response relationships, markedly higher degrees of spontaneous activity and slower desensitization kinetics compared to wild-type ZAC. In conclusion, while ZAC is an atypical CLR in terms of its (identified) agonists and channel characteristics, its signal transduction seems to undergo similar conformational transitions as those in the classical CLR.


Asunto(s)
Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Animales , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mutación , Proteínas del Tejido Nervioso/genética , Oocitos , Subunidades de Proteína , Proteínas Recombinantes de Fusión , Xenopus , Zinc/farmacología
2.
Biochem Pharmacol ; 193: 114782, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560054

RESUMEN

The Zinc-Activated Channel (ZAC) is an atypical member of the Cys-loop receptor (CLR) superfamily of pentameric ligand-gated ion channels, with its very different endogenous agonists and signalling properties. In this study, a compound library screening at ZAC resulted in the identification of 2-(5-bromo-2-chlorobenzamido)-4-methylthiazole-5-methyl ester (1) as a novel ZAC antagonist. The structural determinants for ZAC activity in 1 were investigated by functional characterization of 61 analogs at ZAC expressed in Xenopus oocytes by two-electrode voltage clamp electrophysiology, and couple of analogs exerting more potent ZAC inhibition than 1 were identified (IC50 values: 1-3 µM). 1 and N-(4-(tert-butyl)thiazol-2-yl)-3-fluorobenzamide (5a, TTFB) were next applied in studies of the functional properties and the mode of action of this novel class of ZAC antagonists. TTFB was a roughly equipotent antagonist of Zn+- and H+-evoked ZAC signaling and of spontaneous ZAC activity, and the slow on-set of its channel block suggested that its ZAC inhibition is state-dependent. TTFB was found to be a selective ZAC antagonist, exhibiting no significant agonist, antagonist or modulatory activity at 5-HT3A, α3ß4 nicotinic acetylcholine, α1ß2γ2S GABAA or α1 glycine receptors at 30 µM. 1 displayed largely non-competitive antagonism of Zn2+-induced ZAC signalling, and TTFB was demonstrated to target the transmembrane and/or intracellular domains of the receptor, which collectively suggests that the N-(thiazol-2-yl)-benzamide analog acts a negative allosteric modulator of ZAC. We propose that this first class of selective ZAC antagonists could constitute useful pharmacological tools in future explorations of the presently poorly elucidated physiological functions governed by this CLR.


Asunto(s)
Benzamidas/farmacología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/antagonistas & inhibidores , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Animales , Benzamidas/química , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Descubrimiento de Drogas , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/genética , Oocitos , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Xenopus
3.
Pharmacol Res ; 169: 105653, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33962015

RESUMEN

The signalling characteristics of the Zinc-Activated Channel (ZAC), a member of the Cys-loop receptor (CLR) superfamily, are presently poorly elucidated. The ZACN polymorphism c.454G>A encoding for the Thr128Ala variation in ZAC is found in extremely high allele frequencies across ethnicities. In this, the first study of ZAC in Xenopus oocytes by TEVC electrophysiology, ZACThr128 and ZACAla128 exhibited largely comparable pharmacological and signalling characteristics, but interestingly the Zn2+- and H+-evoked current amplitudes in ZACAla128-oocytes were dramatically smaller than those in ZACThr128-oocytes. While the variation thus appeared to impact cell surface expression and/or channel properties of ZAC, the similar expression properties exhibited by ZACThr128 and ZACAla128 in transfected mammalian cells indicated that their distinct functionalities could arise from the latter. In co-expression experiments, wild-type and variant ZAC subunits assembled efficiently into "heteromeric" complexes in HEK293 cells, while the concomitant presence of ZACAla128 in ZACThr128:ZACAla128-oocytes did not exert a dominant negative effect on agonist-evoked current amplitudes compared to those in ZACThr128-oocytes. Finally, the structural determinants of the functional importance of the 1-hydroxyethyl side-chain of Thr128 appeared to be subtle, as agonist-evoked current amplitudes in ZACSer128-, ZACVal128- and ZACIle128-oocytes also were substantially lower than those in ZACThr128-oocytes. In conclusion, the functional properties exhibited by ZAC in this work substantiate the notion of it being an atypical CLR. While the impact of the Thr128Ala variation on ZAC functionality in oocytes is striking, it remains to be investigated whether and to which extent this translates into an in vivo setting and thus could constitute a source of inter-individual variation in ZAC physiology.


Asunto(s)
Canales Iónicos/metabolismo , Zinc/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Inmunoprecipitación , Canales Iónicos/genética , Canales Iónicos/fisiología , Oocitos/metabolismo , Polimorfismo de Nucleótido Simple/genética , Xenopus laevis
4.
Mol Pharmacol ; 88(4): 676-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26174773

RESUMEN

The serotonin transporter (SERT) regulates neurotransmission by the biogenic monoamine neurotransmitter serotonin (5-HT, 5-hydroxytryptamine) in the central nervous system, and drugs inhibiting SERT are widely used for the treatment of a variety of central nervous system diseases. The conformational dynamics of SERT transport function and inhibition is currently poorly understood. We used voltage-clamp fluorometry to study conformational changes in human SERT (hSERT) during 5-HT transport and inhibitor binding. Cys residues were introduced at 12 positions in hSERT to enable covalent attachment of a rhodamine-based fluorophore. Transport-associated changes in fluorescence from fluorophore-labeled hSERT expressed in Xenopus oocytes could be robustly detected at four positions in hSERT: endogenous Cys109 in the top of transmembrane domain (TM) 1b, Cys substituted for Thr323 in the top of TM6, Ala419 in the interface between TM8 and extracellular loop (EL) 4, and Leu481 in EL5. The reporter positions were used for time-resolved measurement of conformational changes during 5-HT transport and binding of cocaine and the selective serotonin reuptake inhibitors fluoxetine and escitalopram. At all reporter positions, fluorescence changes observed upon substrate application were distinctly different from those observed upon inhibitor application, with respect to relative amplitude or direction. Furthermore, escitalopram, fluoxetine, and cocaine induced a very similar pattern of fluorescent changes overall, which included movements within or around TM1b, EL4, and EL5. Taken together, our data lead us to suggest that competitive inhibitors stabilize hSERT in a state that is different from the apo outward-open conformation as well as inward-facing conformations.


Asunto(s)
Fluorometría/métodos , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Femenino , Células HEK293 , Humanos , Datos de Secuencia Molecular , Técnicas de Placa-Clamp/métodos , Unión Proteica/fisiología , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Especificidad por Sustrato/fisiología , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...