Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0064124, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051781

RESUMEN

Coinfections with human pegivirus 1 (HPgV-1) are common in chronic hepatitis C virus (HCV) patients. However, little is known about whether HPgV-1 is affected by direct-acting antivirals during HCV treatment. Metagenomic analysis and reverse transcriptase-quantitative PCR (RT-qPCR) were performed on RNA from the plasma of 88 selected chronic HCV patients undergoing medical treatment. Twenty (23%) of these HCV patients had HPgV-1 coinfections and were followed by RT-qPCR during treatment and follow-up to investigate HPgV-1 RNA titers. Recovered sequences could be assembled to complete HPgV-1 genomes, and most formed a genotype 2 subclade. All HPgV-1 viral genomic regions were under negative purifying selection. Glecaprevir/pibrentasvir treatment in five patients did not consistently lower the genome titers of HPgV-1. In contrast, a one log10 drop of HPgV-1 titers at week 2 was observed in 10 patients during treatment with sofosbuvir-containing regimens, sustained to the end of treatment (EOT) and in two cases decreasing to below the detection limit of the assay. For the five patients treated with ledipasvir/sofosbuvir with the inclusion of pegylated interferon, titers decreased to below the detection limit at week 2 and remained undetectable to EOT. Subsequently, the HPgV-1 titer rebounded to pretreatment levels for all patients. In conclusion, we found that HCV treatment regimens that included the polymerase inhibitor sofosbuvir resulted in decreases in HPgV-1 titers, and the addition of pegylated interferon increased the effect on patients with coinfections. This points to the high specificity of protease and NS5A inhibitors toward HCV and the more broad-spectrum activity of sofosbuvir and especially pegylated interferon. IMPORTANCE: Human pegivirus 1 coinfections are common in hepatitis C virus (HCV) patients, persisting for years. However, little is known about how pegivirus coinfections are affected by treatment with pangenotypic direct-acting antivirals (DAAs) against HCV. We identified human pegivirus by metagenomic analysis of chronic HCV patients undergoing protease, NS5A, and polymerase inhibitor treatment, in some patients with the addition of pegylated interferon, and followed viral kinetics of both viruses to investigate treatment effects. Only during HCV DAA treatment regimens that included the more broad-spectrum drug sofosbuvir could we detect a consistent decline in pegivirus titers that, however, rebounded to pretreatment levels after treatment cessation. The addition of pegylated interferon gave the highest effect with pegivirus titers decreasing to below the assay detection limit, but without clearance. These results reveal the limited effect of frontline HCV drugs on the closest related human virus, but sofosbuvir appeared to have the potential to be repurposed for other viral diseases.

2.
Sci Rep ; 14(1): 17039, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048693

RESUMEN

Rapidly waning immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires continued global access to affordable vaccines. Globally, inactivated SARS-CoV-2 vaccines have been widely used during the SARS-CoV-2 pandemic. In this proof-of-concept study we adapted an original-D614G SARS-CoV-2 virus to Vero cell culture as a strategy to enhance inactivated vaccine manufacturing productivity. A passage 60 (P60) virus showed enhanced fitness and 50-fold increased virus yield in a bioreactor compared to the original-D614G virus. It further remained susceptible to neutralization by plasma from SARS-CoV-2 vaccinated and convalescent individuals, suggesting exposure of relevant epitopes. Monovalent inactivated P60 and bivalent inactivated P60/omicron BA.1 vaccines induced neutralizing responses against original-D614G and BA.1 viruses in mice and hamsters, demonstrating that the P60 virus is a suitable vaccine antigen. Antibodies further cross-neutralized delta and BA.5 viruses. Importantly, the inactivated P60 vaccine protected hamsters against disease upon challenge with original-D614G or BA.1 virus, with minimal lung pathology and lower virus loads in the upper and lower airways. Antigenicity of the P60 virus was thus retained compared to the original virus despite the acquisition of cell culture adaptive mutations. Consequently, cell culture adaptation may be a useful approach to increase yields in inactivated vaccine antigen production.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de Productos Inactivados , Animales , Células Vero , Chlorocebus aethiops , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Humanos , Protección Cruzada/inmunología , Cricetinae , Femenino
3.
Front Immunol ; 15: 1353353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571939

RESUMEN

As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8+ T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine. Significantly higher neutralizing titers were found after this vaccination compared to the pre-third booster vaccination time point. Further, neutralizing breadth to omicron variants, including BA.1, BA.2, BA.5, BQ.1 and XBB.1, was found to be boosted following bivalent vaccination. SARS-CoV-2-specific CD8+ T cells were identified, but with no evidence that frequencies were increased following booster vaccinations. Spike protein-specific CD8+ T cells were the only responses detected after vaccination and non-spike-specific CD8+ T cells were only detected after infection. Both spike-specific and non-spike-specific CD8+ T cells were found at much lower frequencies than CD8+ T cells specific to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza (Flu). Taken together, these results show that the bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine boosted the breadth of neutralization to newer SARS-CoV-2 variants and that vaccination is able to induce spike protein-specific CD8+ T cell responses, which are maintained longitudinally.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Adulto , Humanos , Anticuerpos Neutralizantes , Vacuna BNT162 , Linfocitos T CD8-positivos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , COVID-19/prevención & control , Herpesvirus Humano 4
4.
J Virol ; 97(12): e0092523, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38092564

RESUMEN

IMPORTANCE: HCV genotype 3b is a difficult-to-treat subtype, associated with accelerated progression of liver disease and resistance to antivirals. Moreover, its prevalence has significantly increased among persons who inject drugs posing a serious risk of transmission in the general population. Thus, more genetic information and antiviral testing systems are required to develop novel therapeutic options for this genotype 3 subtype. We determined the complete genomic sequence and complexity of three genotype 3b isolates, which will be beneficial to study its biology and evolution. Furthermore, we developed a full-length in vivo infectious cDNA clone of genotype 3b and showed its robustness and genetic stability in human-liver chimeric mice. This is, to our knowledge the first reported infectious cDNA clone of HCV genotype 3b and will provide a valuable tool to evaluate antivirals and neutralizing antibodies in vivo, as well as in the development of infectious cell culture systems required for further research.


Asunto(s)
Genoma Viral , Hepacivirus , Hepatitis C , Animales , Humanos , Ratones , Antivirales/uso terapéutico , ADN Complementario/genética , Genotipo , Hepacivirus/genética , Hepatitis C/virología , Análisis de Secuencia
5.
Nature ; 619(7971): 811-818, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407817

RESUMEN

RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.


Asunto(s)
Flavina-Adenina Dinucleótido , Hepacivirus , Caperuzas de ARN , ARN Viral , Animales , Humanos , Ratones , Quimera/virología , Flavina-Adenina Dinucleótido/metabolismo , Hepacivirus/genética , Hepacivirus/inmunología , Hepatitis C/virología , Reconocimiento de Inmunidad Innata , Hígado/virología , Estabilidad del ARN , ARN Viral/química , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral/genética , Caperuzas de ARN/metabolismo
6.
APMIS ; 131(8): 426-433, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37355962

RESUMEN

The introduction of direct-acting antiviral (DAA) treatment of hepatitis C virus (HCV) infected patients has greatly increased treatment success rates. However, viral response kinetics to DAA treatment may depend on pre-existing resistance-associated substitutions (RASs) in HCV. The aim of this study was to describe how pre-existing RASs affect DAA treatment-induced reduction in HCV RNA titers in HCV genotypes 1- and 3-infected individuals. Patients with HCV genotype 1 infection (N = 31) treated with either sofosbuvir/ledipasvir/ribavirin or paritaprevir/ombitasvir/ritonavir/dasabuvir/ribavirin and HCV genotype 3-infected patients (N = 16) treated with either sofosbuvir/daclatasvir/ribavirin or sofosbuvir/ribavirin were analyzed. HCV RNA levels were determined at baseline and frequently during treatment, and RAS profiles were obtained by deep sequencing at baseline. In total, 33/47 (70.2%) of the patients had baseline RASs. However, treatment-specific RASs were detected at baseline only in 12.9% and 18.8% of HCV genotypes 1- and 3-infected patients, respectively. In genotype 1-infected individuals, reduction in HCV RNA titer during the first week of treatment was not affected by evidence of either treatment-specific RASs or cirrhosis or treatment regimen. In genotype 3-infected individuals receiving sofosbuvir/daclatasvir/ribavirin, the presence of daclatasvir-specific NS5A RASs at baseline correlated with a reduced decline of HCV RNA in the first treatment week. For both genotypes 1- and 3-infected individuals, cirrhosis but not treatment-specific RAS were associated with the time of clearance of HCV RNA. It is, however, important to note that this study involves DAA regimens that were used only during the original introduction of interferon-free DAA-based treatments.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Antivirales/uso terapéutico , Sofosbuvir/uso terapéutico , Hepacivirus/genética , Ribavirina/uso terapéutico , ARN Viral/genética , Hepatitis C Crónica/tratamiento farmacológico , Quimioterapia Combinada , Respuesta Virológica Sostenida , Genotipo , Hepatitis C/tratamiento farmacológico
7.
EBioMedicine ; 89: 104475, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36870117

RESUMEN

BACKGROUND: Given the importance of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the prevention of severe coronavirus disease 2019 (COVID-19), detailed long-term analyses of neutralising antibody responses are required to inform immunisation strategies. METHODS: In this study, longitudinal neutralising antibody titres to an ancestral SARS-CoV-2 isolate and cross-neutralisation to delta and omicron isolates were analysed in individuals previously infected with SARS-CoV-2, vaccinated against COVID-19, or a complex mix thereof with up to two years of follow-up. FINDINGS: Both infection-induced and vaccine-induced neutralising responses against SARS-CoV-2 appeared to follow similar decay patterns. Following vaccination in previously infected individuals, neutralising antibody responses were more durable than prior to vaccination. Further, this study shows that vaccination after infection, as well as booster vaccination, increases the cross-neutralising potential to both delta and omicron SARS-CoV-2 variants. INTERPRETATION: Taken together, these results suggest that neither type of antigen exposure is superior for neutralising antibody durability. However, these results support vaccination to increase the durability and cross-neutralisation potential of neutralising responses, thereby enhancing protection against severe COVID-19. FUNDING: This work was supported by grants from The Capital Region of Denmark's Research Foundation, the Novo Nordisk Foundation, the Independent Research Fund Denmark, the Candys Foundation, and the Danish Agency for Science and Higher Education.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Vacunación , Inmunización Secundaria , Anticuerpos Neutralizantes , Anticuerpos Antivirales
8.
Gut ; 72(3): 560-572, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35918103

RESUMEN

OBJECTIVE: A prophylactic vaccine is needed to control the HCV epidemic, with genotypes 1-3 causing >80% of worldwide infections. Vaccine development is hampered by HCV heterogeneity, viral escape including protection of conserved neutralising epitopes and suboptimal efficacy of HCV cell culture systems. We developed cell culture-based inactivated genotype 1-3 HCV vaccine candidates to present natively folded envelope proteins to elicit neutralising antibodies. DESIGN: High-yield genotype 1a, 2a and 3a HCV were developed by serial passage of TNcc, J6cc and DBN3acc in Huh7.5 cells and engineering of acquired mutations detected by next-generation sequencing. Neutralising epitope exposure was determined in cell-based neutralisation assays using human monoclonal antibodies AR3A and AR4A, and polyclonal antibody C211. BALB/c mice were immunised with processed and inactivated genotype 1a, 2a or 3a viruses using AddaVax, a homologue of the licenced adjuvant MF-59. Purified mouse and patient serum IgG were assayed for neutralisation capacity; mouse IgG and immune-sera were assayed for E1/E2 binding. RESULTS: Compared with the original viruses, high-yield viruses had up to ~1000 fold increased infectivity titres (peak titres: 6-7 log10 focus-forming units (FFU)/mL) and up to ~2470 fold increased exposure of conserved neutralising epitopes. Vaccine-induced IgG broadly neutralised genotype 1-6 HCV (EC50: 30-193 µg/mL; mean 71 µg/mL), compared favourably with IgG from chronically infected patients, and bound genotype 1-3 E1/E2; immune-sera endpoint titres reached up to 32 000. CONCLUSION: High-yield genotype 1-3 HCV could be developed as basis for inactivated vaccine candidates inducing broadly neutralising antibodies in mice supporting further preclinical development.


Asunto(s)
Hepatitis C , Vacunas contra Hepatitis Viral , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes/genética , Anticuerpos ampliamente neutralizantes/metabolismo , Epítopos/metabolismo , Genotipo , Inmunoglobulina G , Hepacivirus/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
9.
Viruses ; 14(11)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423136

RESUMEN

Hepatitis C virus (HCV) genotype 4 is highly prevalent in the Middle East and parts of Africa. Subtype 4d has recently spread among high-risk groups in Europe. However, 4d infectious culture systems are not available, hampering studies of drugs, as well as neutralizing antibodies relevant for HCV vaccine development. We determined the consensus 4d sequence from a chronic hepatitis C patient by next-generation sequencing, generated a full-length clone thereof (pDH13), and demonstrated that pDH13 RNA-transcripts were viable in the human-liver chimeric mouse model, but not in Huh7.5 cells. However, a JFH1-based DH13 Core-NS5A 4d clone encoding A1671S, T1785V, and D2411G was viable in Huh7.5 cells, with efficient growth after inclusion of 10 additional substitutions [4d(C5A)-13m]. The efficacies of NS3/4A protease- and NS5A- inhibitors against genotypes 4a and 4d were similar, except for ledipasvir, which is less potent against 4d. Compared to 4a, the 4d(C5A)-13m virus was more sensitive to neutralizing monoclonal antibodies AR3A and AR5A, as well as 4a and 4d patient plasma antibodies. In conclusion, we developed the first genotype 4d infectious culture system enabling DAA efficacy testing and antibody neutralization assessment critical to optimization of DAA treatments in the clinic and for vaccine design to combat the HCV epidemic.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Animales , Ratones , Humanos , Hepacivirus , Antivirales/farmacología , Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Genotipo
10.
Clin Physiol Funct Imaging ; 42(6): 389-395, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35766035

RESUMEN

INTRODUCTION: Patients with chronic hepatitis C (CHC) have an increased risk of atherosclerotic cardiovascular disease which may be due to inflammation and endothelial dysfunction caused by the chronic infection. In this prospective pilot study, we assessed, for the first time among patients with CHC the myocardial perfusion reserve (MPR) by Rubidium-82 (82 Rb) positron emission tomography (PET)/computed tomography (CT) before and after direct-acting antiviral (DAA) treatment and compared them with biomarkers of systemic inflammation and endothelial dysfunction. METHODS: We included 10 patients with CHC who received 8 or 12 weeks of DAA treatment. To obtain the MPR, a cardiac 82 Rb PET/CT scan at rest and adenosine-induced stress was performed at baseline and between 12 and 24 weeks post DAA treatment. Additionally, markers of endothelial dysfunction and inflammation were measured at baseline and 12 weeks after DAA treatment. RESULTS: All 10 patients achieved cure and the median age was 50 (range: 40-62 years). The median MPR before treatment was 3.1 (range: 2.3-4.8) compared to 2.9 (range: 2.2-4.1) after DAA treatment p = 0.63. Also, cure after DAA treatment was not associated with an overall significant decrease in markers of endothelial dysfunction and inflammation. DISCUSSION: Cure after DAA treatment in patients with CHC did not improve coronary microvascular function nor did it lead to a decrease in soluble markers of cardiovascular risk in the given time frame where the patients were followed. It should be noted, that MPR before DAA treatment was in the normal range. Considering the small sample size and short follow-up time, further studies are warranted to determine if viral clearance has an effect on coronary microvascular function and endothelial dysfunction.


Asunto(s)
Hepatitis C Crónica , Adenosina , Antivirales/efectos adversos , Biomarcadores , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/diagnóstico , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Inflamación , Persona de Mediana Edad , Perfusión , Proyectos Piloto , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos
11.
Vaccines (Basel) ; 10(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35062736

RESUMEN

With increasing numbers of vaccine-breakthrough infections worldwide, assessing the immunogenicity of vaccinated health-care workers that are frequently exposed to SARS-CoV-2-infected individuals is important. In this study, neutralization titers against SARS-CoV-2 were assessed one month after completed prime-boost vaccine regimens in health-care workers vaccinated with either mRNA-mRNA (Comirnaty®, BioNTech-Pfzier, Mainz, Germany/New York, NY, USA, n = 98) or vector-based (Vaxzevria®, Oxford-AstraZeneca, Cambridge, UK) followed by mRNA-based (Comirnaty® or Spikevax®, Moderna, Cambridge, MA, USA) vaccines (n = 16). Vaccine-induced neutralization titers were compared to time-matched, unvaccinated individuals that were infected with SARS-CoV-2 and presented with mild symptoms (n = 38). Significantly higher neutralizing titers were found in both the mRNA-mRNA (ID50: 2525, IQR: 1667-4313) and vector-mRNA (ID50: 4978, IQR: 3364-7508) prime-boost vaccine regimens when compared to SARS-CoV-2 infection (ID50: 401, IQR: 271-792) (p < 0.0001). However, infection with SARS-CoV-2 induced higher titers when compared to a single dose of Vaxzevria® (p = 0.0072). Between mRNA-mRNA and vector-mRNA prime-boost regimens, the vector-mRNA vaccine regimen induced higher neutralization titers (p = 0.0054). Demographically, both age and time between vaccination doses were associated with vaccine-induced neutralization titers (p = 0.02 and p = 0.03, respectively). This warrants further investigation into the optimal time to administer booster vaccination for optimized induction of neutralizing responses. Although anecdotal (n = 3), those with exposure to SARS-CoV-2, either before or after vaccination, demonstrated superior neutralizing titers, which is suggestive of further boosting through viral exposure.

12.
EBioMedicine ; 71: 103519, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34419923

RESUMEN

BACKGROUND: Given the importance of neutralising antibodies in protection against SARS-CoV-2 infection, it is critical to assess neutralisation persistence long-term following recovery. This study investigated neutralisation titres against SARS-CoV-2 up to 6 months post-symptom onset in individuals with mild COVID-19. METHODS: Plasma neutralisation titres in convalescent COVID-19 individuals were determined at baseline and 6 months post-symptom onset using a cell culture infectious SARS-CoV-2 assay. Total SARS-CoV-2 spike-specific IgG and IgA binding was measured using a lectin capture ELISA and compared between timepoints and correlated to neutralising titres. FINDINGS: All 48 convalescent COVID-19 individuals were found to have detectable SARS-CoV-2 50% inhibitory dilution neutralisation titres (ID50) at baseline and 6 months post-symptom onset with mean ID50 of 1/943 and 1/411, respectively. SARS-CoV-2 neutralisation titres peaked within 1-2 months post-symptom onset. However, 50% of individuals showed comparable ID50 at baseline and 6 months post-symptom onset. Both SARS-CoV-2 spike-specific IgG and IgA levels correlated well with neutralising titres. IgG binding was found to be sustained up to 6 months post-symptom onset, whereas IgA levels declined. INTERPRETATION: This study demonstrates durability of SARS-CoV-2 spike-specific IgG and neutralisation responses following recovery from mild COVID-19. Thus, all subjects included in this study might potentially have protective levels of neutralising antibodies 6 months post-symptom onset. This study also demonstrates a relationship between spike-specific IgA and neutralisation decline, with implications for long-term protection against SARS-CoV-2 infection. FUNDING: Novo Nordisk Foundation, Independent Research Fund Denmark and Danish Agency for Science and Higher Education.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/patogenicidad , Adulto , COVID-19/epidemiología , COVID-19/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad
13.
Antimicrob Agents Chemother ; 65(7): e0009721, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33903110

RESUMEN

Efforts to mitigate the coronavirus disease 2019 (COVID-19) pandemic include the screening of existing antiviral molecules that could be repurposed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although SARS-CoV-2 replicates and propagates efficiently in African green monkey kidney (Vero) cells, antivirals such as nucleos(t)ide analogs (NUCs) often show decreased activity in these cells due to inefficient metabolization. SARS-CoV-2 exhibits low viability in human cells in culture. Here, serial passages of a SARS-CoV-2 isolate (original-SARS2) in the human hepatoma cell clone Huh7.5 led to the selection of a variant (adapted-SARS2) with significantly improved infectivity in human liver (Huh7 and Huh7.5) and lung cancer (unmodified Calu-1 and A549) cells. The adapted virus exhibited mutations in the spike protein, including a 9-amino-acid deletion and 3 amino acid changes (E484D, P812R, and Q954H). E484D also emerged in Vero E6-cultured viruses that became viable in A549 cells. Original and adapted viruses were susceptible to scavenger receptor class B type 1 (SR-B1) receptor blocking, and adapted-SARS2 exhibited significantly less dependence on ACE2. Both variants were similarly neutralized by COVID-19 convalescent-phase plasma, but adapted-SARS2 exhibited increased susceptibility to exogenous type I interferon. Remdesivir inhibited original- and adapted-SARS2 similarly, demonstrating the utility of the system for the screening of NUCs. Among the tested NUCs, only remdesivir, molnupiravir, and, to a limited extent, galidesivir showed antiviral effects across human cell lines, whereas sofosbuvir, ribavirin, and favipiravir had no apparent activity. Analogously to the emergence of spike mutations in vivo, the spike protein is under intense adaptive selection pressure in cell culture. Our results indicate that the emergence of spike mutations will most likely not affect the activity of remdesivir.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Chlorocebus aethiops , Humanos , Pandemias , Glicoproteína de la Espiga del Coronavirus , Replicación Viral
14.
J Viral Hepat ; 28(2): 236-244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33058390

RESUMEN

The effect of direct-acting antiviral (DAA) therapy on extracellular matrix (ECM) turnover, a prominent feature of chronic hepatitis C (CHC), is unknown. ECM protein degradation and formation generate fragments reflecting the tissue turnover balance when quantified in the blood. PRO-C3 and PRO-C4 reflect type III and IV collagen formation; C3M and C4M are degradation markers of type III and IV. We aimed to assess the markers' dynamics with DAA therapy in CHC patients. Plasma PRO-C3, PRO-C4, C3M and C4M were assessed before, during and up till one year after 12-24 weeks of DAA therapy in 77 CHC patients with advanced fibrosis (n = 14) or cirrhosis (n = 63). Liver stiffness was evaluated using transient elastography. PRO-C3, C3M and C4M levels decreased significantly (P < .00001) while PRO-C4 was unchanged (P = .20) during the study period. There was a steep decrease in the PRO-C3/C3M ratio during DAA therapy and follow-up (P < .02). The PRO-C4/C4M ratio was unchanged (P > .27). The dynamics of the collagen markers behaved similarly between patients with advanced fibrosis and cirrhosis. However, the cirrhosis patients had >20% higher levels of C3M, PRO-C4 and C4M at all time points (P < .05). The collagen markers correlated with liver stiffness at baseline and follow-up.Markers of type III and IV collagen formation and degradation decreased during and after successful DAA therapy in CHC patients with advanced liver disease, and associated with disease severity. These results indicate an altered balance between collagen formation and degradation after viral clearance suggesting favourable effects on liver fibrosis.


Asunto(s)
Antivirales , Hepatitis C Crónica , Antivirales/uso terapéutico , Biomarcadores , Colágeno , Complemento C4 , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Cirrosis Hepática
15.
J Viral Hepat ; 28(2): 302-316, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131178

RESUMEN

Direct-acting antivirals (DAAs) have proven highly effective against chronic hepatitis C virus (HCV) infection. However, some patients experience treatment failure, associated with resistance-associated substitutions (RASs). Our aim was to investigate the complete viral coding sequence in hepatitis C patients treated with DAAs to identify RASs and the effects of treatment on the viral population. We selected 22 HCV patients with sustained virologic response (SVR) to match 21 treatment-failure patients in relation to HCV genotype, DAA regimen, liver cirrhosis and previous treatment experience. Viral-titre data were compared between the two patient groups, and HCV full-length open reading frame deep-sequencing was performed. The proportion of HCV NS5A-RASs at baseline was higher in treatment-failure (82%) than matched SVR patients (25%) (p = .0063). Also, treatment failure was associated with slower declines in viraemia titres. Viral population diversity did not differ at baseline between SVR and treatment-failure patients, but failure was associated with decreased diversity probably caused by selection for RAS. The NS5B-substitution 150V was associated with sofosbuvir treatment failure in genotype 3a. Further, mutations identified in NS2, NS3-helicase and NS5A-domain-III were associated with DAA treatment failure in genotype 1a patients. Six retreated HCV patients (35%) experienced 2nd treatment failure; RASs were present in 67% compared to 11% with SVR. In conclusion, baseline RASs to NS5A inhibitors, but not virus population diversity, and lower viral titre decline predicted HCV treatment failure. Mutations outside of the DAA targets can be associated with DAA treatment failure. Successful DAA retreatment in patients with treatment failure was hampered by previously selected RASs.


Asunto(s)
Antivirales , Hepatitis C Crónica , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Quimioterapia Combinada , Genotipo , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Retratamiento , Insuficiencia del Tratamiento , Proteínas no Estructurales Virales/genética
16.
Hepatology ; 70(3): 771-787, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964552

RESUMEN

Protease inhibitors (PIs) are important components of treatment regimens for patients with chronic hepatitis C virus (HCV) infection. However, emergence and persistence of antiviral resistance could reduce their efficacy. Thus, defining resistance determinants is highly relevant for efforts to control HCV. Here, we investigated patterns of PI resistance-associated substitutions (RASs) for the major HCV genotypes and viral determinants for persistence of key RASs. We identified protease position 156 as a RAS hotspot for genotype 1-4, but not 5 and 6, escape variants by resistance profiling using PIs grazoprevir and paritaprevir in infectious cell culture systems. However, except for genotype 3, engineered 156-RASs were not maintained. For genotypes 1 and 2, persistence of 156-RASs depended on genome-wide substitution networks, co-selected under continued PI treatment and identified by next-generation sequencing with substitution linkage and haplotype reconstruction. Persistence of A156T for genotype 1 relied on compensatory substitutions increasing replication and assembly. For genotype 2, initial selection of A156V facilitated transition to 156L, persisting without compensatory substitutions. The developed genotype 1, 2, and 3 variants with persistent 156-RASs had exceptionally high fitness and resistance to grazoprevir, paritaprevir, glecaprevir, and voxilaprevir. A156T dominated in genotype 1 glecaprevir and voxilaprevir escape variants, and pre-existing A156T facilitated genotype 1 escape from clinically relevant combination treatments with grazoprevir/elbasvir and glecaprevir/pibrentasvir. In genotype 1 infected patients with treatment failure and 156-RASs, we observed genome-wide selection of substitutions under treatment. Conclusion: Comprehensive PI resistance profiling for HCV genotypes 1-6 revealed 156-RASs as key determinants of high-level resistance across clinically relevant PIs. We obtained in vitro proof of concept for persistence of highly fit genotype 1-3 156-variants, which might pose a threat to clinically relevant combination treatments.


Asunto(s)
Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Hepatitis C Crónica/tratamiento farmacológico , Inhibidores de Proteasas/uso terapéutico , 2-Naftilamina , Ácidos Aminoisobutíricos , Anilidas/uso terapéutico , Bencimidazoles/uso terapéutico , Carbamatos/uso terapéutico , Ciclopropanos , Dinamarca , Quimioterapia Combinada , Femenino , Genotipo , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepatitis C Crónica/diagnóstico , Humanos , Lactamas Macrocíclicas , Leucina/análogos & derivados , Masculino , Pronóstico , Prolina/análogos & derivados , Inhibidores de Proteasas/farmacología , Pirrolidinas , Quinoxalinas/uso terapéutico , Sulfonamidas/uso terapéutico , Uracilo/análogos & derivados , Uracilo/uso terapéutico , Valina
17.
Eur J Gastroenterol Hepatol ; 30(10): 1177-1186, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29994874

RESUMEN

OBJECTIVE: New potent direct-acting antiviral (DAA) regimens against hepatitis C virus have been approved in recent years. However, information about the rate of adverse events (AEs) across different DAA regimens is limited. We aimed to evaluate differences in AEs and treatment efficacy in patients with chronic hepatitis C (CHC), genotype (GT) 1 or 3, randomized to two different treatment arms, correspondingly. PATIENTS AND METHODS: We randomly assigned 96 patients in a 1 : 1 ratio, to treatment for 12 weeks with either paritaprevir/ombitasvir/ritonavir/dasabuvir/ribavirin (RBV) or ledipasvir/sofosbuvir (SOF)/RBV if infected with GT1 (72 patients) or to daclatasvir/SOF/RBV for 12 weeks or SOF/RBV for 24 weeks, if infected with GT3 (24 patients). Data on AEs were collected throughout the entire study period. RESULTS: A total of 70 (97%) patients with CHC with GT1 and 20 (83%) patients with GT3 achieved cure. The GT3 treatment arm was prematurely terminated, owing to change in national treatment guidelines. Thus, only AEs for GT1 patients are described. AEs occurred in 70 (97%) GT1 patients, and most common AEs were anemia (n=56/78%), fatigue (n=53/74%), and headache (n=33/46%). No difference was observed in relation to treatment group (P=1.0), anemia (P=1.0), or liver cirrhosis (P=0.53). In seven (11%) patients, AEs assessed by the investigator to be possibly related to the DAA regimen were still present 12 weeks after treatment. CONCLUSIONS: We found no difference in AEs possibly related to the DAA regimen in patients with CHC, but surprisingly, AEs possibly related to the DAA regimen persisted in a significant number of patients after treatment. This finding can be of importance for clinicians in relation to patient information concerning AEs possibly related to DAA treatment.


Asunto(s)
Antivirales/efectos adversos , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , 2-Naftilamina , Adulto , Anemia/inducido químicamente , Anilidas/efectos adversos , Antivirales/uso terapéutico , Bencimidazoles/efectos adversos , Carbamatos/efectos adversos , Ciclopropanos , Quimioterapia Combinada/efectos adversos , Fatiga/inducido químicamente , Femenino , Fluorenos/efectos adversos , Genotipo , Cefalea/inducido químicamente , Humanos , Lactamas Macrocíclicas , Compuestos Macrocíclicos/efectos adversos , Masculino , Persona de Mediana Edad , Prolina/análogos & derivados , Ribavirina/efectos adversos , Ritonavir/efectos adversos , Sofosbuvir/efectos adversos , Sulfonamidas/efectos adversos , Resultado del Tratamiento , Uracilo/efectos adversos , Uracilo/análogos & derivados , Valina , Carga Viral/efectos de los fármacos
18.
Scand J Gastroenterol ; 53(7): 849-856, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29720023

RESUMEN

OBJECTIVES: We describe factors associated with and barriers to initiation of Direct Acting Antiviral (DAA) treatment in patients with chronic hepatitis C, who fulfill national fibrosis treatment guidelines in Denmark. MATERIALS AND METHODS: In this nationwide cohort study, we included patients with chronic hepatitis C from The Danish Database for Hepatitis B and C (DANHEP) who fulfilled fibrosis treatment criteria. Factors associated with treatment initiation and treatment failure were determined by logistic regression analyses. Medical records were reviewed from patients who fulfilled fibrosis treatment criteria, but did not initiate DAA treatment to determine the cause. RESULTS: In 344 (49%) of 700 patients, who fulfilled treatment criteria, factors associated with DAA treatment initiation were transmission by other routes than injecting drug use odds ratio (OR) 2.13 (CI: 1.38-3.28), previous treatment failure OR 2.58 (CI: 1.84-3.61) and ALT above upper limit of normal OR 1.60 (CI: 1.18-2.17). The most frequent reasons for not starting treatment among 356 (51%) patients were non-adherence to medical appointments (n = 107/30%) and ongoing substance use (n = 61/17%). Treatment failure with viral relapse occurred in 19 (5.5%) patients, who were more likely to have failed previous treatment OR 4.53 (CI: 1.59-12.91). CONCLUSIONS: In this nationwide cohort study, we found non-adherence to medical appointments and active substance use to be major obstacles for DAA treatment initiation. Our findings highlight the need for interventions that can overcome these barriers and increase the number of patients who can initiate and benefit from curative DAA treatment.


Asunto(s)
Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/epidemiología , Cooperación del Paciente , Adulto , Estudios de Cohortes , Dinamarca/epidemiología , Esquema de Medicación , Femenino , Hepacivirus/genética , Hepatitis C Crónica/complicaciones , Humanos , Cirrosis Hepática/epidemiología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Guías de Práctica Clínica como Asunto , Factores de Riesgo , Respuesta Virológica Sostenida , Insuficiencia del Tratamiento
19.
PLoS One ; 9(12): e113034, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25438153

RESUMEN

BACKGROUND AND AIMS: The first standard of care in treatment of chronic HCV genotype 1 infection involving directly acting antivirals was protease inhibitors telaprevir or boceprevir combined with pegylated-interferon and ribavirin (triple therapy). Phase III studies include highly selected patients. Thus, treatment response and development of viral resistance during triple therapy in a routine clinical setting needs to be determined. The aims of this study were to investigate treatment outcome and identify sequence variations after triple therapy in patients with chronic HCV genotype 1 infection in a routine clinical setting. METHODS: 80 patients, who initiated and completed triple therapy in Denmark between May 2011 and November 2012, were included. Demographic data and treatment response were obtained from the Danish Database for Hepatitis B and C. Direct sequencing and clonal analysis of the RT-PCR amplified NS3 protease were performed in patients without cure following triple therapy. RESULTS: 38 (47%) of the patients achieved cure, 15 (19%) discontinued treatment due to adverse events and remained infected, and 27 (34%) experienced relapse or treatment failure of whom 15 of 21 analyzed patients had well-described protease inhibitor resistance variants detected. Most frequently detected protease variants were V36M and/or R155K, and V36M, in patients with genotype 1a and 1b infection, respectively. CONCLUSIONS: The cure rate after triple therapy in a routine clinical setting was 47%, which is substantially lower than in clinical trials. Resistance variants towards protease inhibitors were seen in 71% of patients failing therapy indicating that resistance could have an important role in treatment response.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Inhibidores de Proteasas/farmacología , Antivirales/uso terapéutico , Dinamarca/epidemiología , Femenino , Genotipo , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Hepacivirus/genética , Hepatitis C Crónica/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Inhibidores de Proteasas/uso terapéutico , Insuficiencia del Tratamiento , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...