Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(4): e0232476, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32353073

RESUMEN

P5 ATPases are eukaryotic pumps important for cellular metal ion, lipid and protein homeostasis; however, their transported substrate, if any, remains to be identified. Ca2+ was proposed to act as a ligand of P5 ATPases because it decreases the level of phosphoenzyme of the Spf1p P5A ATPase from Saccharomyces cerevisiae. Repeating previous purification protocols, we obtained a purified preparation of Spf1p that was close to homogeneity and exhibited ATP hydrolytic activity that was stimulated by the addition of CaCl2. Strikingly, a preparation of a catalytically dead mutant Spf1p (D487N) also exhibited Ca2+-dependent ATP hydrolytic activity. These results indicated that the Spf1p preparation contained a co-purifying protein capable of hydrolyzing ATP at a high rate. The activity was likely due to a phosphatase, since the protein i) was highly active when pNPP was used as substrate, ii) required Ca2+ or Zn2+ for activity, and iii) was strongly inhibited by molybdate, beryllium and other phosphatase substrates. Mass spectrometry identified the phosphatase Pho8p as a contaminant of the Spf1p preparation. Modification of the purification procedure led to a contaminant-free Spf1p preparation that was neither stimulated by Ca2+ nor inhibited by EGTA or molybdate. The phosphoenzyme levels of a contaminant-free Spf1p preparation were not affected by Ca2+. These results indicate that the reported effects of Ca2+ on Spf1p do not reflect the intrinsic properties of Spf1p but are mediated by the activity of the accompanying phosphatase.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Biocatálisis , Cloruro de Calcio/metabolismo , Pruebas de Enzimas , Hidrólisis , Mutación , Naftoles , Nitrofenoles/metabolismo , Compuestos Organofosforados/metabolismo , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Triazinas
2.
Front Mol Neurosci ; 7: 48, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904274

RESUMEN

Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease), ATP7B (Wilson disease), the Na(+)/K(+)-ATPases ATP1A2 (familial hemiplegic migraine) and ATP1A3 (rapid-onset dystonia parkinsonism). Finally, we review the recent literature of ATP13A2 and discuss ATP13A2's putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events.

3.
Proc Natl Acad Sci U S A ; 107(50): 21400-5, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21098259

RESUMEN

The activity of P-type plasma membrane H(+)-ATPases is modulated by H(+) and cations, with K(+) and Ca(2+) being of physiological relevance. Using X-ray crystallography, we have located the binding site for Rb(+) as a K(+) congener, and for Tb(3+) and Ho(3+) as Ca(2+) congeners. Rb(+) is found coordinated by a conserved aspartate residue in the phosphorylation domain. A single Tb(3+) ion is identified positioned in the nucleotide-binding domain in close vicinity to the bound nucleotide. Ho(3+) ions are coordinated at two distinct sites within the H(+)-ATPase: One site is at the interface of the nucleotide-binding and phosphorylation domains, and the other is in the transmembrane domain toward the extracellular side. The identified binding sites are suggested to represent binding pockets for regulatory cations and a H(+) binding site for protons leaving the pump molecule. This implicates Ho(3+) as a novel chemical tool for identification of proton binding sites.


Asunto(s)
Cationes/química , Membrana Celular/química , Estructura Terciaria de Proteína , Bombas de Protones/química , Protones , Sitios de Unión , Cristalografía por Rayos X , Prueba de Complementación Genética , Metales/química , Datos de Secuencia Molecular , Mutación Puntual , Bombas de Protones/genética , Saccharomyces cerevisiae
4.
J Biol Chem ; 285(41): 31243-52, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20650903

RESUMEN

Heavy metal pumps (P1B-ATPases) are important for cellular heavy metal homeostasis. AtHMA4, an Arabidopsis thaliana heavy metal pump of importance for plant Zn(2+) nutrition, has an extended C-terminal domain containing 13 cysteine pairs and a terminal stretch of 11 histidines. Using a novel size-exclusion chromatography, inductively coupled plasma mass spectrometry approach we report that the C-terminal domain of AtHMA4 is a high affinity Zn(2+) and Cd(2+) chelator with capacity to bind 10 Zn(2+) ions per C terminus. When AtHMA4 is expressed in a Zn(2+)-sensitive zrc1 cot1 yeast strain, sequential removal of the histidine stretch and the cysteine pairs confers a gradual increase in Zn(2+) and Cd(2+) tolerance and lowered Zn(2+) and Cd(2+) content of transformed yeast cells. We conclude that the C-terminal domain of AtHMA4 serves a dual role as Zn(2+) and Cd(2+) chelator (sensor) and as a regulator of the efficiency of Zn(2+) and Cd(2+) export. The identification of a post-translational handle on Zn(2+) and Cd(2+) transport efficiency opens new perspectives for regulation of Zn(2+) nutrition and tolerance in eukaryotes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cadmio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Zinc/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Transporte Iónico/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...