Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(10): e0274908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36264897

RESUMEN

P5A ATPases are expressed in the endoplasmic reticulum (ER) of all eukaryotic cells, and their disruption results in pleiotropic phenotypes related to severe ER stress. They were recently proposed to function in peptide translocation although their specificity have yet to be confirmed in reconstituted assays using the purified enzyme. A general theme for P-type ATPases is that binding and transport of substrates is coupled to hydrolysis of ATP in a conserved allosteric mechanism, however several independent reports have shown purified Spf1p to display intrinsic spontaneous ATP hydrolytic activity after purification. It has never been determined to what extend this spontaneous activity is caused by uncoupling of the enzyme. In this work we have purified a functional tagged version of the Saccharomyces cerevisiae P5A ATPase Spf1p and have observed that the intrinsic ATP hydrolytic activity of the purified and re-lipidated protein can be stimulated by specific detergents (C12E8, C12E10 and Tween20) in mixed lipid/detergent micelles in the absence of any apparent substrate. We further show that this increase in activity correlate with the reaction temperature and the anisotropic state of the mixed lipid/detergent micelles and further that this correlation relies on three highly conserved phenylalanine residues in M1. This suggests that at least part of the intrinsic ATP hydrolytic activity is allosterically coupled to movements in the TM domain in the purified preparations. It is suggested that free movement of the M1 helix represent an energetic constraint on catalysis and that this constraint likely is lost in the purified preparations resulting in protein with intrinsic spontaneous ATP hydrolytic activity. Removal of the N-terminal part of the protein apparently removes this activity.


Asunto(s)
Micelas , ATPasas Tipo P , Detergentes , Saccharomyces cerevisiae/genética , ATPasas Tipo P/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Lípidos , Fenilalanina/metabolismo
2.
Physiol Plant ; 168(3): 630-647, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31268560

RESUMEN

In a search for slowly evolving nuclear genes that may cast light on the deep evolution of plants, we carried out phylogenetic analyses of two well-characterized subfamilies of P-type pumps (P2A and P5A ATPases) from representative branches of the eukaryotic tree of life. Both P-type ATPase genes were duplicated very early in eukaryotic evolution and before the divergence of the present eukaryotic supergroups. Synapomorphies identified in the sequences provide evidence that green plants and red algae are more distantly related than are green plants and eukaryotic supergroups in which secondary or tertiary plastids are common, such as several groups belonging to the clade that includes Stramenopiles, Alveolata, Rhizaria, Cryptophyta and Haptophyta (SAR). We propose that red algae branched off soon after the first photosynthesizing eukaryote had acquired a primary plastid, while in another lineage that led to SAR, the primary plastid was lost but, in some cases, regained as a secondary or tertiary plastid.


Asunto(s)
Adenosina Trifosfatasas/genética , Evolución Biológica , Duplicación de Gen , Proteínas de Plantas/genética , Rhodophyta/genética , Viridiplantae/genética , Filogenia , Plastidios
3.
Biochem J ; 476(5): 783-794, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30755463

RESUMEN

Type IV P-type ATPases (P4 ATPases) are lipid flippases that catalyze phospholipid transport from the exoplasmic to the cytoplasmic leaflet of cellular membranes, but the mechanism by which they recognize and transport phospholipids through the lipid bilayer remains unknown. In the present study, we succeeded in purifying recombinant aminophospholipid ATPase 2 (ALA2), a member of the P4 ATPase subfamily in Arabidopsis thaliana, in complex with the ALA-interacting subunit 5 (ALIS5). The ATP hydrolytic activity of the ALA2-ALIS5 complex was stimulated in a highly specific manner by phosphatidylserine. Small changes in the stereochemistry or the functional groups of the phosphatidylserine head group affected enzymatic activity, whereas alteration in the length and composition of the acyl chains only had minor effects. Likewise, the enzymatic activity of the ALA2-ALIS5 complex was stimulated by both mono- and di-acyl phosphatidylserines. Taken together, the results identify the lipid head group as the key structural element for substrate recognition by the P4 ATPase.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Fosfatidilserinas/química , Proteínas de Transferencia de Fosfolípidos/química , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatidilserinas/genética , Proteínas de Transferencia de Fosfolípidos/genética , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
Mol Biol Cell ; 30(9): 1069-1084, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30785834

RESUMEN

P5A ATPases are expressed in the endoplasmic reticulum (ER) of all eukaryotic cells, and their disruption results in severe ER stress. However, the function of these ubiquitous membrane proteins, which belong to the P-type ATPase superfamily, is unknown. We purified a functional tagged version of the Saccharomyces cerevisiae P5A ATPase Spf1p and observed that the ATP hydrolytic activity of the protein is stimulated by phosphatidylinositol 4-phosphate (PI4P). Furthermore, SPF1 exhibited negative genetic interactions with SAC1, encoding a PI4P phosphatase, and with OSH1 to OSH6, encoding Osh proteins, which, when energized by a PI4P gradient, drive export of sterols and lipids from the ER. Deletion of SPF1 resulted in increased sensitivity to inhibitors of sterol production, a marked change in the ergosterol/lanosterol ratio, accumulation of sterols in the plasma membrane, and cytosolic accumulation of lipid bodies. We propose that Spf1p maintains cellular sterol homeostasis by influencing the PI4P-induced and Osh-mediated export of sterols from the ER.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Homeostasis , ATPasas Tipo P/metabolismo , Filogenia , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
5.
PLoS One ; 13(3): e0193228, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29505581

RESUMEN

Several human P5-type transport ATPases are implicated in neurological disorders, but little is known about their physiological function and properties. Here, we investigated the relationship between the five mammalian P5 isoforms ATP13A1-5 in a comparative study. We demonstrated that ATP13A1-4 isoforms undergo autophosphorylation, which is a hallmark P-type ATPase property that is required for substrate transport. A phylogenetic analysis of P5 sequences revealed that ATP13A1 represents clade P5A, which is highly conserved between fungi and animals with one member in each investigated species. The ATP13A2-5 isoforms belong to clade P5B and diversified from one isoform in fungi and primitive animals to a maximum of four in mammals by successive gene duplication events in vertebrate evolution. We revealed that ATP13A1 localizes in the endoplasmic reticulum (ER) and experimentally demonstrate that ATP13A1 likely contains 12 transmembrane helices. Conversely, ATP13A2-5 isoforms reside in overlapping compartments of the endosomal system and likely contain 10 transmembrane helices, similar to what was demonstrated earlier for ATP13A2. ATP13A1 complemented a deletion of the yeast P5A ATPase SPF1, while none of ATP13A2-5 could complement either the loss of SPF1 or that of the single P5B ATPase YPK9 in yeast. Thus, ATP13A1 carries out a basic ER function similar to its yeast counterpart Spf1p that plays a role in ER related processes like protein folding and processing. ATP13A2-5 isoforms diversified in mammals and are expressed in the endosomal system where they may have evolved novel complementary or partially redundant functions. While most P5-type ATPases are widely expressed, some P5B-type ATPases (ATP13A4 and ATP13A5) display a more limited tissue distribution in the brain and epithelial glandular cells, where they may exert specialized functions. At least some P5B isoforms are of vital importance for the nervous system, since ATP13A2 and ATP13A4 are linked to respectively Parkinson disease and autism spectrum disorders.


Asunto(s)
Evolución Molecular , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Fosforilación , Filogenia , Conformación Proteica en Hélice alfa , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ATPasas de Translocación de Protón/química
6.
Proc Natl Acad Sci U S A ; 112(29): 9040-5, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26134396

RESUMEN

ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor-Rakeb syndrome and Parkinson's disease (PD), providing protection against α-synuclein, Mn(2+), and Zn(2+) toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce α-synuclein toxicity or mitochondrial stress in PD or related disorders.


Asunto(s)
Lípidos/química , Enfermedad de Parkinson/metabolismo , ATPasas de Translocación de Protón/metabolismo , Secuencia de Aminoácidos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citosol/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Manganeso/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Ácidos Fosfatidicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Homología Estructural de Proteína , Zinc/farmacología
7.
Biochim Biophys Acta ; 1850(3): 524-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24836520

RESUMEN

BACKGROUND: P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. SCOPE OF REVIEW: This review aims to discuss the available evidence which could lead to identification of possible substrates of P5A-ATPases. MAJOR CONCLUSIONS: The complex phenotypes resulting from the loss of P5A-ATPases in model organisms can be explained by a role of the P5A-ATPase in the endoplasmic reticulum (ER), where loss of function leads to broad and unspecific phenotypes related to the impairment of basic ER functions such as protein folding and processing. Genetic interactions in Saccharomyces cerevisiae point to a role of the endogenous P5A-ATPase Spf1p in separation of charges in the ER, in sterol metabolism, and in insertion of tail-anchored proteins in the ER membrane. A role for P5A-ATPases in vesicle formation would explain why sterol transport and distribution are affected in knock out cells, which in turn has a negative impact on the spontaneous insertion of tail-anchored proteins. It would also explain why secretory proteins destined for the Golgi and the cell wall have difficulties in reaching their final destination. Cations and phospholipids could both be transported substrates of P5A-ATPases and as each carry charges, transport of either might explain why a charge difference arises across the ER membrane. GENERAL SIGNIFICANCE: Identification of the substrate of P5A-ATPases would throw light on an important general process in the ER that is still not fully understood. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Transporte Biológico , Retículo Endoplásmico/metabolismo , Modelos Biológicos , Mutación , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esteroles/metabolismo , Especificidad por Sustrato
8.
J Biol Chem ; 287(34): 28336-48, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22730321

RESUMEN

P5 ATPases constitute the least studied group of P-type ATPases, an essential family of ion pumps in all kingdoms of life. Although P5 ATPases are present in every eukaryotic genome analyzed so far, they have remained orphan pumps, and their biochemical function is obscure. We show that a P5A ATPase from barley, HvP5A1, locates to the endoplasmic reticulum and is able to rescue knock-out mutants of P5A genes in both Arabidopsis thaliana and Saccharomyces cerevisiae. HvP5A1 spontaneously forms a phosphorylated reaction cycle intermediate at the catalytic residue Asp-488, whereas, among all plant nutrients tested, only Ca(2+) triggers dephosphorylation. Remarkably, Ca(2+)-induced dephosphorylation occurs at high apparent [Ca(2+)] (K(i) = 0.25 mM) and is independent of the phosphatase motif of the pump and the putative binding site for transported ligands located in M4. Taken together, our results rule out that Ca(2+) is a transported substrate but indicate the presence of a cytosolic low affinity Ca(2+)-binding site, which is conserved among P-type pumps and could be involved in pump regulation. Our work constitutes the first characterization of a P5 ATPase phosphoenzyme and points to Ca(2+) as a modifier of its function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Calcio/metabolismo , Hordeum/enzimología , Proteínas de Plantas/metabolismo , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Sitios de Unión , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Hordeum/genética , Fosforilación/fisiología , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
9.
Biochim Biophys Acta ; 1797(6-7): 846-55, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20416272

RESUMEN

Evolution of P5 type ATPases marks the origin of eukaryotes but still they remain the least characterized pumps in the superfamily of P-type ATPases. Phylogenetic analysis of available sequences suggests that P5 ATPases should be divided into at least two subgroups, P5A and P5B. P5A ATPases have been identified in the endoplasmic reticulum and seem to have basic functions in protein maturation and secretion. P5B ATPases localize to vacuolar/lysosomal or apical membranes and in animals play a role in hereditary neuronal diseases. Here we have used a bioinformatical approach to identify differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially. Together these findings indicate that P5A and P5B ATPases are structurally and functionally different.


Asunto(s)
Adenosina Trifosfatasas/clasificación , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico/genética , Biología Computacional , Bases de Datos de Proteínas , Evolución Molecular , Humanos , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...