Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Med ; 30(1): 106-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092897

RESUMEN

Existing antiarrhythmic drugs to treat atrial fibrillation (AF) have incomplete efficacy, contraindications and adverse effects, including proarrhythmia. AP30663, an inhibitor of the KCa2 channel, has demonstrated AF efficacy in animals; however, its efficacy in humans with AF is unknown. Here we conducted a phase 2 trial in which patients with a current episode of AF lasting for 7 days or less were randomized to receive an intravenous infusion of 3 or 5 mg kg-1 AP30663 or placebo. The trial was prematurely discontinued because of slow enrollment during the coronavirus disease 2019 pandemic. The primary endpoint of the trial was cardioversion from AF to sinus rhythm within 90 min from the start of the infusion, analyzed with Bayesian statistics. Among 59 patients randomized and included in the efficacy analyses, the primary endpoint occurred in 42% (5 of 12), 55% (12 of 22) and 0% (0 of 25) of patients treated with 3 mg kg-1 AP30663, 5 mg kg-1 AP30663 or placebo, respectively. Both doses demonstrated more than 99.9% probability of superiority over placebo, surpassing the prespecified 95% threshold. The mean time to cardioversion, a secondary endpoint, was 47 (s.d. = 23) and 41 (s.d. = 24) minutes for 3 mg kg-1 and 5 mg kg-1 AP30663, respectively. AP30663 caused a transient increase in the QTcF interval, with a maximum mean effect of 37.7 ms for the 5 mg kg-1 dose. For both dose groups, no ventricular arrhythmias occurred and adverse event rates were comparable to the placebo group. AP30663 demonstrated AF cardioversion efficacy in patients with recent-onset AF episodes. KCa2 channel inhibition may be an attractive mechanism for rhythm control of AF that should be studied further in randomized trials. ClinicalTrials.gov registration: NCT04571385 .


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/tratamiento farmacológico , Teorema de Bayes , Resultado del Tratamiento , Antiarrítmicos/efectos adversos , Infusiones Intravenosas
2.
Br J Clin Pharmacol ; 90(4): 1027-1035, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990600

RESUMEN

AIMS: AP30663 is a novel compound under development for pharmacological conversion of atrial fibrillation by targeting the small conductance Ca2+ activated K+ (KCa2) channel. The aim of this extension phase 1 study was to test AP30663 at higher single doses compared to the first-in-human trial. METHODS: Sixteen healthy male volunteers were randomized into 2 cohorts: 6- and 8-mg/kg intravenous single-dose administration of AP30663 vs. placebo. Safety, pharmacokinetic and pharmacodynamic data were collected. RESULTS: AP30663 was associated with mild and transient infusion site reactions with no clustering of other adverse events but with an estimated maximum mean QTcF interval prolongation of 45.2 ms (95% confidence interval 31.5-58.9) in the 6 mg/kg dose level and 50.4 ms (95% confidence interval 36.7-64.0) with 8 mg/kg. Pharmacokinetics was dose proportional with terminal half-life of around 3 h. CONCLUSION: AP30663 in doses up to 8 mg/kg was associated with mild and transient infusion site reactions and an increase of the QTcF interval. Supporting Information support that the QTc effect may be explained by an off-target inhibition of the IKr channel.


Asunto(s)
Fibrilación Atrial , Humanos , Masculino , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Electrocardiografía , Frecuencia Cardíaca , Reacción en el Punto de Inyección
3.
Int J Cardiol Heart Vasc ; 35: 100842, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34355058

RESUMEN

BACKGROUND: Fibroblasts maintain the extracellular matrix homeostasis and may couple to cardiomyocytes through gap junctions and thereby increase the susceptibility to slow conduction and cardiac arrhythmias, such as atrial fibrillation (AF). In this study, we used an equine model of persistent AF to characterize structural changes and the role of fibroblasts in the development of an arrhythmogenic substrate for AF. MATERIAL AND METHODS: Eleven horses were subjected to atrial tachypacing until self-sustained AF developed and were kept in AF for six weeks. Horses in sinus rhythm (SR) served as control. In terminal open-chest experiments conduction velocity (CV) was measured. Tissue was harvested and stained from selected sites. Automated image analysis was performed to assess fibrosis, fibroblasts, capillaries and various cardiomyocyte characteristics. RESULTS: Horses in SR showed a rate-dependent slowing of CV, while in horses with persistent AF this rate-dependency was completely abolished (CV•basic cycle length relation p = 0.0295). Overall and interstitial amounts of fibrosis were unchanged, but an increased fibroblast count was found in left atrial appendage, Bachmann's bundle, intraatrial septum and pulmonary veins (p < 0.05 for all) in horses with persistent AF. The percentage of α-SMA expressing fibroblasts remained the same between the groups. CONCLUSION: Persistent AF resulted in fibroblast accumulation in several regions, particularly in the left atrial appendage. The increased number of fibroblasts could be a mediator of altered electrophysiology during AF. Targeting the fibroblast proliferation and differentiation could potentially serve as a novel therapeutic target slowing down the structural remodeling associated with AF.

4.
Europace ; 23(11): 1847-1859, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34080619

RESUMEN

AIMS: Pharmacological termination of atrial fibrillation (AF) remains a challenge due to limited efficacy and potential ventricular proarrhythmic effects of antiarrhythmic drugs. SK channels are proposed as atrial-specific targets in the treatment of AF. Here, we investigated the effects of the new SK channel inhibitor AP14145. METHODS AND RESULTS: Eight goats were implanted with pericardial electrodes for induction of AF (30 days). In an open-chest study, the atrial conduction velocity (CV) and effective refractory period (ERP) were measured during pacing. High-density mapping of both atrial free-walls was performed during AF and conduction properties were assessed. All measurements were performed at baseline and during AP14145 infusion [10 mg/kg/h (n = 1) or 20 mg/kg/h (n = 6)]. At an infusion rate of 20 mg/kg/h, AF terminated in five of six goats. AP14145 profoundly increased ERP and reduced CV during pacing. AP14145 increased spatiotemporal instability of conduction at short pacing cycle lengths. Atrial fibrillation cycle length and pathlength (AF cycle length × CV) underwent a strong dose-dependent prolongation. Conduction velocity during AF remained unchanged and conduction patterns remained complex until the last seconds before AF termination, during which a sudden and profound organization of fibrillatory conduction occurred. CONCLUSION: AP14145 provided a successful therapy for termination of persistent AF in goats. During AF, AP14145 caused an ERP and AF cycle length prolongation. AP14145 slowed CV during fast pacing but did not lead to a further decrease during AF. Termination of AF was preceded by an abrupt organization of AF with a decline in the number of fibrillation waves.


Asunto(s)
Fibrilación Atrial , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Atrios Cardíacos , Humanos
5.
Front Physiol ; 12: 614483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633584

RESUMEN

BACKGROUND: Small-conductance Ca2+-activated K+ (KCa2) channels have been proposed as a possible atrial-selective target to pharmacologically terminate atrial fibrillation (AF) and to maintain sinus rhythm. However, it has been hypothesized that the importance of the KCa2 current-and thereby the efficacy of small-conductance Ca2+-activated K+ current (I K,Ca) inhibition-might be negatively related to AF duration and the extent of AF-induced remodeling. EXPERIMENTAL APPROACH AND METHODS: To address the hypothesis of the efficacy of I K,Ca inhibition being dependent on AF duration, the anti-arrhythmic properties of the I K,Ca inhibitor NS8593 (5 mg/kg) and its influence on atrial conduction were studied using epicardial high-density contact mapping in horses with persistent AF. Eleven Standardbred mares with tachypacing-induced persistent AF (42 ± 5 days of AF) were studied in an open-chest experiment. Unipolar AF electrograms were recorded and isochronal high-density maps analyzed to allow for the reconstruction of wave patterns and changes in electrophysiological parameters, such as atrial conduction velocity and AF cycle length. Atrial anti-arrhythmic properties and adverse effects of NS8593 on ventricular electrophysiology were evaluated by continuous surface ECG monitoring. RESULTS: I K,Ca inhibition by NS8593 administered intravenously had divergent effects on right and left AF complexity and propagation properties in this equine model of persistent AF. Despite global prolongation of AF cycle length, a slowing of conduction in the right atrium led to increased anisotropy and electrical dissociation, thus increasing AF complexity. In contrast, there was no significant change in AF complexity in the LA, and cardioversion of AF was not achieved. CONCLUSIONS: Intra-atrial heterogeneity in response to I K,Ca inhibition by NS8593 was observed. The investigated dose of NS8593 increased the AF cycle length but was not sufficient to induce cardioversion. In terms of propagation properties during AF, I K,Ca inhibition by NS8593 led to divergent effects in the right and left atrium. This divergent behavior may have impeded the cardioversion success.

6.
Clin Transl Sci ; 13(6): 1336-1344, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32725783

RESUMEN

Pharmacological cardioversion of atrial fibrillation (AF) is frequently inefficacious. AP30663, a small conductance Ca2+ activated K+ (KCa 2) channel blocker, prolonged the atrial effective refractory period in preclinical studies and subsequently converted AF into normal sinus rhythm. This first-in-human study evaluated the safety and tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects were explored. Forty-seven healthy male volunteers (23.7 ± 3.0 years) received AP30663 intravenously in ascending doses. Due to infusion site reactions, changes to the formulation and administration were implemented in the latter 24 volunteers. Extractions from a 24-hour continuous electrocardiogram were used to evaluate the PD effect of AP30663. Data were analyzed with a repeated measure analysis of covariance, noncompartmental analysis, and concentration-effect analysis. In total, 33 of 34 adverse events considered related to AP30663 exposure were related to the infusion site, mild in severity, and temporary in nature, although full recovery took up to 110 days. After formulation and administration changes, the local infusion site reaction remained, but the median duration was shorter despite higher dose levels. AP30663 displayed a less than dose proportional increase in peak plasma concentration (Cmax ) and a terminal half-life of around 5 hours. In healthy volunteers, no effect of AP30663 was observed on electrocardiographic parameters, other than a concentration-dependent effect on the corrected QT Fridericia's formula interval (+18.8 ± 4.3 ms for the highest dose level compared with time matched placebo). In conclusion, administration of AP30663, a novel KCa 2 channel inhibitor, was safe and well-tolerated systemically in humans, supporting further development in patients with AF undergoing cardioversion.


Asunto(s)
Antiarrítmicos/efectos adversos , Electrocardiografía/efectos de los fármacos , Reacción en el Punto de Inyección/diagnóstico , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Adolescente , Adulto , Antiarrítmicos/administración & dosificación , Antiarrítmicos/farmacocinética , Fibrilación Atrial/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Semivida , Voluntarios Sanos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Infusiones Intravenosas , Reacción en el Punto de Inyección/etiología , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Adulto Joven
7.
Front Pharmacol ; 11: 749, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508659

RESUMEN

BACKGROUND: Hypokalemia reduces the cardiac repolarization reserve. This prolongs the QT-interval and increases the risk of ventricular arrhythmia; a risk that is exacerbated by administration of classical class 3 anti-arrhythmic agents.Small conductance Ca2+-activated K+-channels (KCa2) are a promising new atrial selective target for treatment of atrial fibrillation. Under physiological conditions KCa2 plays a minor role in ventricular repolarization. However, this might change under hypokalemia because of concomitant increases in ventriculay -60r intracellur Ca2+. PURPOSE: To study the effects of pharmacological KCa2 channel inhibition by the compounds AP14145, ICA, or AP30663 under hypokalemic conditions as compared to dofetilide and hypokalemia alone time-matched controls (TMC). METHODS: The current at +10 mV was compared in HEK293 cells stably expressing KCa2.3 perfused first with normo- and then hypokalemic solutions (4 mM K+ and 2.5 mM K+, respectively). Guinea pig hearts were isolated and perfused with normokalemic (4 mM K+) Krebs-Henseleit solution, followed by perfusion with drug or vehicle control. The perfusion was then changed to hypokalemic solution (2.5 mM K+) in presence of drug. 30 animals were randomly assigned to 5 groups: ICA, AP14145, AP30663, dofetilide, or TMC. QT-interval, the interval from the peak to the end of the T wave (Tp-Te), ventricular effective refractory period (VERP), arrhythmia score, and ventricular fibrillation (VF) incidence were recorded. RESULTS: Hypokalemia slightly increased KCa2.3 current compared to normokalemia. Application of KCa2 channel inhibitors and dofetilide prolonged the QT interval corrected for heart rate. Dofetilide, but none of the KCa2 channel inhibitors increased Tp-Te during hypokalemia. During hypokalemia 4/6 hearts in the TMC group developed VF (two spontaneously, two by S1S2 stimulation) whereas 5/6 hearts developed VF in the dofetilide group (two spontaneously, three by S1S2 stimulation). In comparison, 0/6, 1/6, and 1/6 hearts developed VF when treated with the KCa2 channel inhibitors AP30663, ICA, or AP14145, respectively. CONCLUSION: Hypokalemia was associated with an increased incidence of VF, an effect that also seen in the presence of dofetilide. In comparison, the structurally and functionally different KCa2 channel inhibitors, ICA, AP14145, and AP30663 protected the heart from hypokalemia induced VF. These results support that KCa2 inhibition may be associated with a better safety and tolerability profile than dofetilide.

8.
Front Pharmacol ; 11: 610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477117

RESUMEN

AIMS: Small conductance Ca2+-activated K+ channels (SK channels, KCa2) are a new target for treatment of atrial fibrillation (AF). AP30663 is a small molecule inhibitor of KCa2 channels that is currently in clinical development for treatment of AF. The aim of this study is to present the electrophysiological profile and mechanism of action of AP30663 and its efficacy in prolonging atrial refractoriness in rodents, and by bioinformatic analysis investigate if genetic variants in KCNN2 or KCNN3 influence the expression level of these in human heart tissue. METHODS AND RESULTS: Whole-cell and inside-out patch-clamp recordings of heterologously expressed KCa2 channels revealed that AP30663 inhibits KCa2 channels with minor effects on other relevant cardiac ion channels. AP30663 modulates the KCa2.3 channel by right-shifting the Ca2+-activation curve. In isolated guinea pig hearts AP30663 significantly prolonged the atrial effective refractory period (AERP) with minor effects on the QT-interval corrected for heart rate. Similarly, in anaesthetized rats 5 and 10 mg/kg of AP30663 changed the AERP to 130.7±5.4% and 189.9±18.6 of baseline values. The expression quantitative trait loci analyses revealed that the genome wide association studies for AF SNP rs13376333 in KCNN3 is associated with increased mRNA expression of KCNN3 in human atrial appendage tissue. CONCLUSIONS: AP30663 is a novel negative allosteric modulator of KCa2 channels that concentration-dependently prolonged rodent atrial refractoriness with minor effects on the QT-interval. Moreover, AF associated SNPs in KCNN3 influence KCNN3 mRNA expression in human atrial tissue. These properties support continued development of AP30663 for treatment of AF in man.

9.
Br J Pharmacol ; 177(16): 3778-3794, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32436234

RESUMEN

BACKGROUND AND PURPOSE: Inhibition of the G-protein gated ACh-activated inward rectifier potassium current, IK,ACh may be an effective atrial selective treatment strategy for atrial fibrillation (AF). Therefore, the anti-arrhythmic and electrophysiological properties of a novel putatively potent and highly specific IK,ACh inhibitor, XAF-1407 (3-methyl-1-[5-phenyl-4-[4-(2-pyrrolidin-1-ylethoxymethyl)-1-piperidyl]thieno[2,3-d]pyrimidin-6-yl]azetidin-3-ol), were characterised for the first time in vitro and investigated in horses with persistent AF. EXPERIMENTAL APPROACH: The pharmacological ion channel profile of XAF-1407 was investigated using cell lines expressing relevant ion channels. In addition, eleven horses were implanted with implantable cardioverter defibrillators enabling atrial tachypacing into self-sustained AF. The electrophysiological effects of XAF-1407 were investigated after serial cardioversions over a period of 1 month. Cardioversion success, drug-induced changes of atrial tissue refractoriness, and ventricular electrophysiology were assessed at baseline (day 0) and days 3, 5, 11, 17, and 29 after AF induction. KEY RESULTS: XAF-1407 potently and selectively inhibited Kir 3.1/3.4 and Kir 3.4/3.4, underlying the IK,ACh current. XAF-1407 treatment in horses prolonged atrial effective refractory period as well as decreased atrial fibrillatory rate significantly (~20%) and successfully cardioverted AF, although with a decreasing efficacy over time. XAF-1407 shortened atrioventricular-nodal refractoriness, without effect on QRS duration. QTc prolongation (4%) within 15 min of drug infusion was observed, however, without any evidence of ventricular arrhythmia. CONCLUSION AND IMPLICATIONS: XAF-1407 efficiently cardioverted sustained tachypacing-induced AF of short duration in horses without notable side effects. This supports IK,ACh inhibition as a potentially safe treatment of paroxysmal AF in horses, suggesting potential clinical value for other species including humans.


Asunto(s)
Fibrilación Atrial , Animales , Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Atrios Cardíacos , Caballos , Potasio
10.
Front Pharmacol ; 11: 159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180722

RESUMEN

AIMS: To describe the effects of the KCa2 channel inhibitor AP30663 in pigs regarding tolerability, cardiac electrophysiology, pharmacokinetics, atrial functional selectivity, effectiveness in cardioversion of tachy-pacing induced vernakalant-resistant atrial fibrillation (AF), and prevention of reinduction of AF. METHODS AND RESULTS: Six healthy pigs with implanted pacemakers and equipped with a Holter monitor were used to compare the effects of increasing doses (0, 5, 10, 15, 20, and 25 mg/kg) of AP30663 on the right atrial effective refractory period (AERP) and on various ECG parameters, including the QT interval. Ten pigs with implanted neurostimulators were long-term atrially tachypaced (A-TP) until sustained vernakalant-resistant AF was present. 20 mg/kg AP30663 was tested to discover if it could successfully convert vernakalant-resistant AF to sinus rhythm (SR) and protect against reinduction of AF. Seven anesthetized pigs were used for pharmacokinetic experiments. Two pigs received an infusion of 20 mg/kg AP30663 over 60 min while five pigs received 5 mg/kg AP30663 over 30 min. Blood samples were collected before, during, and after infusion on AP30663. AP30663 was well-tolerated and prominently increased the AERP in pigs with little effect on ventricular repolarization. Furthermore, it converted A-TP induced AF that had become unresponsive to vernakalant, and it prevented reinduction of AF in pigs. Both a >30 ms increase of the AERP and conversion of AF occurred in different pigs at a free plasma concentration level of around 1.0-1.4 µM of AP30663, which was achieved at a dose level of 5 mg/kg. CONCLUSION: AP30663 has shown properties in animals that would be of clinical interest in man.

11.
Europace ; 21(10): 1584-1593, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408093

RESUMEN

AIMS: Acute myocardial infarction (AMI) is associated with intracellular Ca2+ build-up. In healthy ventricles, small conductance Ca2+-activated K+ (SK) channels are present but do not participate in repolarization. However, SK current is increased in chronic myocardial infarction and heart failure, and recently, SK channel inhibition was demonstrated to reduce arrhythmias in AMI rats. Hence, we hypothesized that SK channel inhibitors (NS8593 and AP14145) could reduce arrhythmia development during AMI in a porcine model. METHODS AND RESULTS: Twenty-seven pigs were randomized 1:1:1 to control, NS8593, or AP14145. Haemodynamic and electrophysiological parameters [electrocardiogram (ECG) and monophasic action potentials (MAP)] were continuously recorded. A balloon was placed in the mid-left anterior descending artery, blinded to treatment. Infusion lasted from 10 min before occlusion until 30 min after. Occlusion was maintained for 1 h, followed by 2 h of reperfusion. Upon occlusion, cardiac output dropped similarly in all groups, while blood pressure remained stable. Heart rate decreased in the NS8593 and AP14145 groups. QRS duration increased upon occlusion in all groups but more prominently in AP14145-treated pigs. Inhibition of SK channels did not affect QT interval. Infarct MAP duration shortened comparably in all groups. Ventricular fibrillation developed in 4/9 control-, 4/9 AP14145-, and 2/9 NS8593-treated pigs. Ventricular tachycardia was rarely observed in either group, whereas ventricular extrasystoles occurred comparably in all groups. CONCLUSION: Inhibition of SK channels was neither beneficial nor detrimental to ventricular arrhythmia development in the setting of AMI in this porcine model.


Asunto(s)
1-Naftilamina/análogos & derivados , Electrocardiografía , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Infarto del Miocardio/tratamiento farmacológico , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Taquicardia Ventricular/etiología , 1-Naftilamina/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Porcinos , Taquicardia Ventricular/fisiopatología
12.
Front Pharmacol ; 10: 668, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275147

RESUMEN

Background and Purpose: Prolongation of cardiac action potentials is considered antiarrhythmic in the atria but can be proarrhythmic in ventricles if the current carried by Kv11.1-channels (IKr) is inhibited. The current mediated by KCa2-channels, IKCa, is considered a promising new target for treatment of atrial fibrillation (AF). Selective inhibitors of IKr (dofetilide) and IKCa (AP14145) were used to compare the effects on ventricular and atrial repolarization. Ondansetron, which has been reported to be a potent blocker of both IKr and IKCa, was included to examine its potential atrial antiarrhythmic properties. Experimental Approach: The expression of KCa2- and Kv11.1-channels in the guinea pig heart was investigated using quantitative polymerase chain reaction (qPCR). Whole-cell patch clamp technique was used to investigate the effects of dofetilide, AP14145, and ondansetron on IKCa and/or IKr. The effect of dofetilide, AP14145, and ondansetron on atrial and ventricular repolarization was investigated in isolated hearts. A novel atrial paced in vivo guinea pig model was further validated using AP14145 and dofetilide. Key Results: AP14145 increased the atrial effective refractory period (AERP) without prolonging the QT interval with Bazett's correction for heart rate (QTcB) both ex vivo and in vivo. In contrast, dofetilide increased QTcB and, to a lesser extent, AERP in isolated hearts and prolonged QTcB with no effects on AERP in the in vivo guinea pig model. Ondansetron did not inhibit IKCa, but did inhibit IKr in vitro. Ondansetron prolonged ventricular, but not atrial repolarization ex vivo. Conclusion and Implications: IKCa inhibition by AP14145 selectively increases atrial repolarization, whereas IKr inhibition by dofetilide and ondansetron increases ventricular repolarization to a larger extent than atrial repolarization.

13.
Front Pharmacol ; 9: 1409, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559671

RESUMEN

A variety of polycyclic pyridines have been proposed as inhibitors of the small conductance calcium-activated potassium (SK) channel. To this group belongs 2,6-bis(2-benzimidazolyl)pyridine (BBP), a commercially and readily available small organic compound which has earlier been described in a broad range of chemical and biological uses. Here, we show how BBP can also be used as a potent and specific SK channel blocker in vitro. The potency of BBP was measured using automatic patch clamp on all three SK channel subtypes, resulting in similar IC50 of 0.4 µM. We also assessed the selectivity of BBP on a panel of calcium-activated and voltage-activated potassium channels using two-electrode voltage clamp, automatic and manual patch clamp. BBP did not have any effect on IK, Kir2.1, Kir3.1+Kir3.4, Kv1.5, Kv4.3/KCHIP2 and Kv7.1/KCNE1 currents and was 4.8-fold and 46-fold more potent on all SK channel subtypes vs. BK and hERG channels, respectively. Moreover, we were able to identify H491 as a critical amino acid for the pharmacological effect of BBP on the SK channel. From a medicinal chemistry perspective, BBP could be used as a starting point for the design of new and improved SK inhibitors.

14.
Artículo en Inglés | MEDLINE | ID: mdl-29018164

RESUMEN

BACKGROUND: Evidence has emerged that small-conductance Ca2+-activated K+ (SK) channels constitute a new target for treatment of atrial fibrillation (AF). SK channels are predominantly expressed in the atria as compared with the ventricles. Various marketed antiarrhythmic drugs are limited by ventricular adverse effects and efficacy loss as AF progresses. METHODS AND RESULTS: A total of 43 pigs were used for the studies. AF reversion in conscious long-term tachypaced pigs: Pigs were subjected to atrial tachypacing (7 Hz) until they developed sustained AF that could not be reverted by vernakalant 4 mg/kg (18.8±3.3 days of atrial tachypacing). When the SK channel inhibitor AP14145 was tested in these animals, vernakalant-resistant AF was reverted to sinus rhythm, and reinduction of AF by burst pacing (50 Hz) was prevented in 8 of 8 pigs. Effects on refractory period and AF duration in open chest pigs: The effects of AP14145 and vernakalant on the effective refractory periods and acute burst pacing-induced AF were examined in anaesthetized open chest pigs. Both vernakalant and AP14145 significantly prolonged atrial refractoriness and reduced AF duration without affecting the ventricular refractoriness or blood pressure in pigs subjected to 7 days atrial tachypacing, as well as in sham-operated control pigs. CONCLUSIONS: SK currents play a role in porcine atrial repolarization, and pharmacological inhibition of these with AP14145 demonstrates antiarrhythmic effects in a vernakalant-resistant porcine model of AF. These results suggest SK channel blockers as potentially interesting anti-AF drugs.


Asunto(s)
Anisoles/farmacología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/fisiopatología , Pirrolidinas/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Acetamidas , Animales , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Placa-Clamp , Periodo Refractario Electrofisiológico , Porcinos
15.
Br J Pharmacol ; 174(23): 4396-4408, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28925012

RESUMEN

BACKGROUND AND PURPOSE: Small conductance calcium-activated potassium (KCa 2) channels represent a promising atrial-selective target for treatment of atrial fibrillation. Here, we establish the mechanism of KCa 2 channel inhibition by the new compound AP14145. EXPERIMENTAL APPROACH: Using site-directed mutagenesis, binding determinants for AP14145 inhibition were explored. AP14145 selectivity and mechanism of action were investigated by patch-clamp recordings of heterologously expressed KCa 2 channels. The biological efficacy of AP14145 was assessed by measuring atrial effective refractory period (AERP) prolongation in anaesthetized rats, and a beam walk test was performed in mice to determine acute CNS-related effects of the drug. KEY RESULTS: AP14145 was found to be an equipotent negative allosteric modulator of KCa 2.2 and KCa 2.3 channels (IC50  = 1.1 ± 0.3 µM). The presence of AP14145 (10 µM) increased the EC50 of Ca2+ on KCa 2.3 channels from 0.36 ± 0.02 to 1.2 ± 0.1 µM. The inhibitory effect strongly depended on two amino acids, S508 and A533 in the channel. AP14145 concentration-dependently prolonged AERP in rats. Moreover, AP14145 (10 mg·kg-1 ) did not trigger any apparent CNS effects in mice. CONCLUSIONS AND IMPLICATIONS: AP14145 is a negative allosteric modulator of KCa 2.2 and KCa 2.3 channels that shifted the calcium dependence of channel activation, an effect strongly dependent on two identified amino acids. AP14145 prolonged AERP in rats and did not trigger any acute CNS effects in mice. The understanding of how KCa 2 channels are inhibited, at the molecular level, will help further development of drugs targeting KCa 2 channels.


Asunto(s)
Acetamidas/farmacología , Regulación Alostérica/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Acetamidas/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Ratones , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/administración & dosificación , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
16.
Pflugers Arch ; 468(4): 643-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26729267

RESUMEN

In isolated human atrial cardiomyocytes, inhibition of K2P3.1 K(+) channels results in action potential (action potential duration (APD)) prolongation. It has therefore been postulated that K2P3.1 (KCNK3), together with K2P9.1 (KCNK9), could represent novel drug targets for the treatment of atrial fibrillation (AF). However, it is unknown whether these findings in isolated cells translate to the whole heart. The purposes of this study were to investigate the expression levels of KCNK3 and KCNK9 in human hearts and two relevant rodent models and determine the antiarrhythmic potential of K2P3.1 inhibition in isolated whole-heart preparations. By quantitative PCR, we found that KCNK3 is predominantly expressed in human atria whereas KCNK9 was not detectable in heart human tissue. No differences were found between patients in AF or sinus rhythm. The expression in guinea pig heart resembled humans whereas rats displayed a more uniform expression of KCNK3 between atria and ventricle. In voltage-clamp experiments, ML365 and A293 were found to be potent and selective inhibitors of K2P3.1, but at pH 7.4, they failed to prolong atrial APD and refractory period (effective refractory period (ERP)) in isolated perfused rat and guinea pig hearts. At pH 7.8, which augments K2P3.1 currents, pharmacological channel inhibition produced a significant prolongation of atrial ERP (11.6 %, p = 0.004) without prolonging ventricular APD but did not display a significant antiarrhythmic effect in our guinea pig AF model (3/8 hearts converted on A293 vs 0/7 hearts in time-matched controls). These results suggest that when K2P3.1 current is augmented, K2P3.1 inhibition leads to atrial-specific prolongation of ERP; however, this ERP prolongation did not translate into significant antiarrhythmic effects in our AF model.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Función Atrial , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Protones , Periodo Refractario Electrofisiológico , Adolescente , Adulto , Animales , Arritmias Cardíacas/fisiopatología , Células Cultivadas , Femenino , Cobayas , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Ratas , Ratas Wistar , Especificidad de la Especie , Función Ventricular
17.
J Cardiovasc Pharmacol ; 66(5): 441-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25830485

RESUMEN

Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle.


Asunto(s)
Fibrilación Atrial/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Frecuencia Cardíaca , Canales de Potasio Calcio-Activados/metabolismo , Animales , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/fisiopatología , Drogas en Investigación/uso terapéutico , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Transducción de Señal
18.
Heart Rhythm ; 12(4): 825-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25542425

RESUMEN

BACKGROUND: Small-conductance calcium-activated potassium (SK) channels have been found to play an important role in atrial repolarization and atrial fibrillation (AF). OBJECTIVE: The purpose of this study was to investigate the existence and functional role of SK channels in the equine heart. METHODS: Cardiac biopsies were analyzed to investigate the expression level of the most prominent cardiac ion channels, with special focus on SK channels, in the equine heart. Subcellular distribution of SK isoform 2 (SK2) was assessed by immunohistochemistry and confocal microscopy. The electrophysiologic and anti-AF effects of the relative selective SK channel inhibitor NS8593 (5 mg/kg IV) were evaluated in anesthetized horses, focusing on the potential of NS8593 to terminate acute pacing-induced AF, drug-induced changes in atrial effective refractory period, AF duration and vulnerability, and ventricular depolarization and repolarization times. RESULTS: Analysis revealed equivalent mRNA transcript levels of the 3 SK channel isoforms in atria compared to ventricles. Immunohistochemistry and confocal microscopy displayed a widespread distribution of SK2 in both atrial and ventricular cardiomyocytes. NS8593 terminated all induced AF episodes (duration ≥15 minutes), caused pronounced prolongation of atrial effective refractory period, and reduced AF duration and vulnerability. QRS duration and QTc interval were not affected by treatment. CONCLUSION: SK channels are widely distributed in atrial and ventricular cardiomyocytes and contribute to atrial repolarization. Inhibition by NS8593 terminates pacing-induced AF of short duration and decreases AF duration and vulnerability without affecting ventricular conduction and repolarization. Thus, inhibition by NS8593 demonstrates clear atrial antiarrhythmic properties in healthy horses.


Asunto(s)
1-Naftilamina/análogos & derivados , Fibrilación Atrial , Miocitos Cardíacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , 1-Naftilamina/farmacología , Animales , Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Modelos Animales de Enfermedad , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Caballos , Inmunohistoquímica , Microscopía Confocal , Modelos Anatómicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Resultado del Tratamiento
19.
Artículo en Inglés | MEDLINE | ID: mdl-21987061

RESUMEN

Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different ion channel composition in the atria and ventricles. The present text will review the aetiology of arrhythmias with focus on AF and include a description of cardiac ion channels. Channels that constitute potentially atria-selective targets will be described in details. Specific focus is addressed to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/prevención & control , Fibrilación Atrial/fisiopatología , Bloqueadores de los Canales de Calcio/farmacología , Canales Iónicos/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Potenciales de Acción , Animales , Calcio/metabolismo , Electrofisiología , Corazón/fisiología , Humanos , Iones , Modelos Biológicos , Canales de Potasio/metabolismo
20.
Mol Pharmacol ; 81(2): 210-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22046005

RESUMEN

We have previously identified Ser293 in transmembrane segment 5 as a determinant for selective K(Ca)2.1 channel activation by GW542573X (4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester). Now we show that Ser293 mediates both activation and inhibition of K(Ca)2.1: CM-TPMF (N-{7-[1-(4-chloro-2-methylphenoxy)ethyl]-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl}-N'-methoxy-formamidine) and B-TPMF (N-{7-[1-(4-tert-butyl-phenoxy)ethyl]-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl}-N'-methoxy-formamidine), two newly identified and structurally related [1,2,4]triazolo[1,5-a]pyrimidines, act either as activators or as inhibitors of the human K(Ca)2.1 channel. Whereas (-)-CM-TPMF activates K(Ca)2.1 with an EC(50) value of 24 nM, (-)-B-TPMF inhibits the channel with an IC(50) value of 31 nM. In contrast, their (+)-enantiomers are 40 to 100 times less active. Both (-)-CM-TPMF and (-)-B-TPMF are subtype-selective, with 10- to 20-fold discrimination toward other K(Ca)2 channels and the K(Ca)3 channel. Coapplication experiments reveal competitive-like functional interactions between the effects of (-)-CM-TPMF and (-)-B-TPMF. Despite belonging to a different chemical class than GW542573X, the K(Ca)2.1 selectivity of (-)-CM-TPMF and (-)-B-TPMF depend critically on Ser293 as revealed by loss- and gain-of-function mutations. We conclude that compounds occupying the TPMF site may either positively or negatively influence the gating process depending on their substitution patterns. It is noteworthy that (-)-CM-TPMF is 10 times more potent on K(Ca)2.1 than NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime), an unselective but hitherto the most potent K(Ca)3/K(Ca)2 channel activator. (-)-B-TPMF is the first small-molecule inhibitor with significant selectivity among the K(Ca)2 channel subtypes. In contrast to peptide blockers such as apamin and scyllatoxin, which preferentially affect K(Ca)2.2, (-)-B-TPMF exhibits K(Ca)2.1 selectivity. These high-affinity compounds, which exert opposite effects on K(Ca)2.1 gating, may help define physiological or pathophysiological roles of this channel.


Asunto(s)
Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Sustitución de Aminoácidos , Sitios de Unión , Humanos , Concentración 50 Inhibidora , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA