Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750032

RESUMEN

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Asunto(s)
Antioxidantes , Regulación de la Expresión Génica de las Plantas , Extractos Vegetales , Tolerancia a la Sal , Plantones , Triticum , Triticum/efectos de los fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Tolerancia a la Sal/genética , Tolerancia a la Sal/efectos de los fármacos , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Extractos Vegetales/farmacología , Helechos/efectos de los fármacos , Helechos/genética , Helechos/metabolismo , Estrés Fisiológico/efectos de los fármacos , Salinidad , Cloruro de Sodio/farmacología , Estrés Oxidativo/efectos de los fármacos
3.
Chem Biodivers ; 20(10): e202301035, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37647333

RESUMEN

An efficient method has been developed for the synthesis of novel α-aminophosphonates (AAP) (3 a-m) through a one-pot three-component reaction of 1,3-disubstituted-1H-pyrazol-5-amine, aromatic aldehydes, and phosphite using lithium perchlorate as catalyst. All newly synthesized compounds were characterized via different spectroscopic techniques. The synthesized compounds' mode of action was investigated using molecular docking against the outer membrane protein A (OMPA) and exo-1,3-ß-glucanase, with interpreting their pharmacokinetics aspects. The results of the antimicrobial effectiveness of these compounds revealed a broad spectrum of their biocidal activity and this in-vitro study was in line with the in- silico results. Additionally, it has been demonstrated that these compounds exhibited a minimum inhibitory concentration (MIC) with significant activity at low concentrations (7.5-30.0 mg/mL). Further, the radical scavenging (DPPH* ) activity of the synthesized compounds fluctuated, with compounds 3 h, 3 a, and 3 f showing the highest antioxidant activity. Overall, the formulated compounds can be employed as antimicrobial and antioxidant agents in medical applications.

4.
J Genet Eng Biotechnol ; 21(1): 32, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36929363

RESUMEN

BACKGROUND: Seaweeds are a viable bioresource for suffering plants against salt stress, as they abundant in nutrients, hormones, vitamins, secondary metabolites, and many other phytochemicals that sustain plants' growth under both typical and stressful situations. The alleviating capacity of extracts from three brown algae (Sargassum vulgare, Colpomenia sinuosa, and Pandia pavonica) in pea (Pisum sativum L.) was investigated in this study. METHODS: Pea seeds were primed for 2 h either with seaweed extracts (SWEs) or distilled water. Seeds were then subjected to salinity levels of 0.0, 50, 100, and 150 mM NaCl. On the 21st day, seedlings were harvested for growth, physiological and molecular investigations. RESULTS: SWEs helped reduce the adverse effects of salinity on pea, with S. vulgare extract being the most effective. Furthermore, SWEs diminished the effect of NaCl-salinity on germination, growth rate, and pigment content and raised the osmolytes proline and glycine betaine levels. On the molecular level, two low-molecular-weight proteins were newly synthesized by the NaCl treatments and three by priming pea seeds with SWEs. The number of inter-simple sequence repeats (ISSR) markers increased from 20 in the control to 36 in 150 mM NaCl-treated seedlings, including four unique markers. Priming with SWEs triggered more markers than the control, however about ten of the salinity-induced markers were not detected following seed priming before NaCl treatments. By priming with SWEs, seven unique markers were elicited. CONCLUSION: All in all, priming with SWEs alleviated salinity stress on pea seedlings. Salinity-responsive proteins and ISSR markers are produced in response to salt stress and priming with SWEs.

5.
Physiol Mol Biol Plants ; 26(11): 2209-2223, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33268924

RESUMEN

Salinity is a critical issue impairing the growth and productivity of most crop species through the mediated ionic and osmotic imbalances. As a way forward, the current study was tailored to elucidate the capacity of sulfur nanoparticles (SNPs) to amend salinity consequences on growth and physio-biochemical attributes of wheat. In a controlled experiment, wheat seeds were primed for 12 h with either 100 µM SNPs or deionized water then sown in plastic pots containing 5 kg clay-sand mixture (2:1 w/w). A week later, pots received NaCl (100 or 200 mM) as a sole treatment or in combination with SNPs and after three weeks the data of morph-bio-physiological traits were recorded. Salinity decreased growth rate, pigmentation, protein, amino acids, cysteine, ascorbate, flavonoids and phenolics content in wheat leaves. Plants pre-treated with 100 µM SNPs showed improved growth rate, pigmentation, nitrogen metabolism as well as non-enzymatic antioxidant contents as compared with salinized treatments. Neither salt nor SNP treatments affected photosynthetic performance rate (Fv/fm), however both treatments induced glutathione content. SNP treatment retrieved the undue excessive activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) besides the increased level of proline caused by salt stress. Likewise, 100 µM SNPs rebalanced the declined nitrogen, phosphorus and potassium contents and decreased sodium uptake caused by salinity. On the whole, priming with 100 µM SNPs improved photosynthetic pigments, nitrogen metabolism, antioxidant status and ionic relations contributing to the enhancement of growth attributes in wheat under salinity.

6.
Ecotoxicol Environ Saf ; 191: 110242, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32004945

RESUMEN

A novel green approach was utilized to fabricate sulfur nanoparticles (SNPs) with the aid of Ocimum basilicum leaves extract. The effective formation of the synthesized SNPs was examined and approved using UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The average particle size was 23 nm with spherical shape and crystalline in nature. In the pot experiment, the synthesized SNPs were applied with different concentrations (12.5, 25, 50, 100 and 200 µM) as pre-soaking to Helianthus annuus seeds and irrigated with 100 mM MnSO4. As a result of manganese (Mn) exposure, the harvested 14-day sunflower seedlings showed a significant decline in the growth parameters (shoot length, leaf area and the relative water content of both shoot and root), photosynthetic pigments, mineral content (N, P, K, Ca, and Mg), and protein content compared to the control. The root length, electrolyte leakage, Na and Mn levels, metabolites content (amino acids, protein, glycine betaine, proline, and cysteine) were greatly raised as affected by Mn stress. Mn toxicity reduction using SNPs was demonstrated, as the medium doses enhanced seedlings growth, photosynthetic pigments, and mineral nutrients. Application of SNPs decreased Mn uptake and enhanced S metabolism through increasing cysteine level. Likewise, SNPs elevated seedlings water content and eliminated physiological drought via increasing osmolytes such as amino acids and proline. It can be concluded that green-synthesized SNPs had the potential to limit the deleterious effects of Mn stress.


Asunto(s)
Helianthus , Manganeso/toxicidad , Nanopartículas/química , Ocimum basilicum/química , Azufre/farmacología , Tecnología Química Verde , Helianthus/efectos de los fármacos , Helianthus/crecimiento & desarrollo , Tamaño de la Partícula , Fotosíntesis/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química , Prolina/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Azufre/química , Agua/metabolismo
7.
Physiol Mol Biol Plants ; 24(4): 617-629, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30042617

RESUMEN

Due to its substantial nutritional value, quinoa (Chenopodium quinoa Willd.) is currently attracting worldwide attention. Quinoa is characterized by a high adaptability to various environmental conditions. This is the first report on the phytochemical and genetic evaluation of quinoa germplasms introduced to Egypt, and the results could be used to implement propagation techniques in the future. For phytochemical characterization, 41 traits, including primary and secondary metabolites, antioxidant molecules, sugars, organic acids and fatty acids, were evaluated. At the same time, 4 RAPD and 7 ISSR markers were used for genetic analysis. UPGMA analysis of RAPD and ISSR polymorphic markers, their combined dataset and phytochemical traits were used to evaluate genetic relationships among genotypes. The quinoa genotypes displayed reasonable variation in the studied phytochemical traits. The results of the genetic analysis confirmed that RAPD and ISSR markers could be used to distinguish effectively quinoa genotypes. The phytochemical and genetic characterization reported herein will be a promising guide for breeding seed quality in quinoa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA