Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5547, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684231

RESUMEN

Serotonin is a neurotransmitter that signals through 5-HT receptors to control key functions in the nervous system. Serotonin receptors are also ubiquitously expressed in various organs and have been detected in embryos of different organisms. Potential morphogenetic functions of serotonin signaling have been proposed based on pharmacological studies but a mechanistic understanding is still lacking. Here, we uncover a role of serotonin signaling in axis extension of Drosophila embryos by regulating Myosin II (MyoII) activation, cell contractility and cell intercalation. We find that serotonin and serotonin receptors 5HT2A and 5HT2B form a signaling module that quantitatively regulates the amplitude of planar polarized MyoII contractility specified by Toll receptors and the GPCR Cirl. Remarkably, serotonin signaling also regulates actomyosin contractility at cell junctions, cellular flows and epiblast morphogenesis during chicken gastrulation. This phylogenetically conserved mechanical function of serotonin signaling in regulating actomyosin contractility and tissue flow reveals an ancestral role in morphogenesis of multicellular organisms.


Asunto(s)
Actomiosina , Serotonina , Animales , Citoesqueleto de Actina , Transducción de Señal , Proteínas del Citoesqueleto , Drosophila , Morfogénesis
2.
Science ; 367(6476): 453-458, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31974255

RESUMEN

Tissue morphogenesis is driven by local cellular deformations that are powered by contractile actomyosin networks. How localized forces are transmitted across tissues to shape them at a mesoscopic scale is still unclear. Analyzing gastrulation in entire avian embryos, we show that it is driven by the graded contraction of a large-scale supracellular actomyosin ring at the margin between the embryonic and extraembryonic territories. The propagation of these forces is enabled by a fluid-like response of the epithelial embryonic disk, which depends on cell division. A simple model of fluid motion entrained by a tensile ring quantitatively captures the vortex-like "polonaise" movements that accompany the formation of the primitive streak. The geometry of the early embryo thus arises from the transmission of active forces generated along its boundary.


Asunto(s)
Actomiosina/fisiología , Embrión no Mamífero/fisiología , Gastrulación/fisiología , Actomiosina/química , Amnios , Animales , Anisotropía , División Celular , Codorniz/embriología , Resistencia a la Tracción
3.
Sci Rep ; 9(1): 14647, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601854

RESUMEN

Morphogenesis relies on the active generation of forces, and the transmission of these forces to surrounding cells and tissues. Hence measuring forces directly in developing embryos is an essential task to study the mechanics of development. Among the experimental techniques that have emerged to measure forces in epithelial tissues, force inference is particularly appealing. Indeed it only requires a snapshot of the tissue, as it relies on the topology and geometry of cell contacts, assuming that forces are balanced at each vertex. However, establishing force inference as a reliable technique requires thorough validation in multiple conditions. Here we performed systematic comparisons of force inference with laser ablation experiments in four epithelial tissues from two animals, the fruit fly and the quail. We show that force inference accurately predicts single junction tension, tension patterns in stereotyped groups of cells, and tissue-scale stress patterns, in wild type and mutant conditions. We emphasize its ability to capture the distribution of forces at different scales from a single image, which gives it a critical advantage over perturbative techniques such as laser ablation. Overall, our results demonstrate that force inference is a reliable and efficient method to quantify the mechanical state of epithelia during morphogenesis, especially at larger scales when inferred tensions and pressures are binned into a coarse-grained stress tensor.


Asunto(s)
Desarrollo Embrionario , Células Epiteliales/fisiología , Epitelio/crecimiento & desarrollo , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Drosophila , Embrión no Mamífero , Presión , Codorniz , Estrés Mecánico
4.
EMBO Rep ; 18(9): 1509-1520, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28684399

RESUMEN

In many cell types, mitotic spindle orientation relies on the canonical "LGN complex" composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαiin vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species-specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas Portadoras/química , Proteínas de Ciclo Celular , División Celular , Polaridad Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Inhibidores de Disociación de Guanina Nucleótido/química , Inhibidores de Disociación de Guanina Nucleótido/genética , Ratones , Microtúbulos/metabolismo , Neocórtex/fisiología , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Huso Acromático/genética
5.
Dev Cell ; 36(3): 249-61, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26859350

RESUMEN

During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.


Asunto(s)
Actomiosina/metabolismo , División Celular/fisiología , Movimiento Celular/fisiología , Células Epiteliales/citología , Gastrulación/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , Embrión de Pollo , Pollos , Citoesqueleto/metabolismo
6.
Mech Dev ; 138 Pt 2: 73-86, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26238019

RESUMEN

Hox proteins have well-established functions in development and evolution, controlling the final morphology of bilaterian animals. The common phylogenetic origin of Hox proteins and the associated evolutionary diversification of protein sequences provide a unique framework to explore the relationship between changes in protein sequence and function. In this study, we aimed at questioning how sequence variation within arthropod Hox proteins influences function. This was achieved by exploring the functional impact of sequence conservation/divergence of the Hox genes, labial, Sex comb reduced, Deformed, Ultrabithorax and abdominalA from two distant arthropods, the sea spider and the well-studied Drosophila. Results highlight a correlation between sequence conservation within the homeodomain and the degree of functional conservation, and identify a novel functional domain in the Labial protein.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Arañas/genética , Arañas/metabolismo , Secuencia de Aminoácidos , Animales , Artrópodos/genética , Artrópodos/metabolismo , Secuencia Conservada/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/genética , Variación Genética/genética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
7.
J Cell Biol ; 206(6): 707-17, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25202028

RESUMEN

Oriented cell divisions are necessary for the development of epithelial structures. Mitotic spindle orientation requires the precise localization of force generators at the cell cortex via the evolutionarily conserved LGN complex. However, polarity cues acting upstream of this complex in vivo in the vertebrate epithelia remain unknown. In this paper, we show that Dlg1 is localized at the basolateral cell cortex during mitosis and is necessary for planar spindle orientation in the chick neuroepithelium. Live imaging revealed that Dlg1 is required for directed spindle movements during metaphase. Mechanistically, we show that direct interaction between Dlg1 and LGN promotes cortical localization of the LGN complex. Furthermore, in human cells dividing on adhesive micropatterns, homogenously localized Dlg1 recruited LGN to the mitotic cortex and was also necessary for proper spindle orientation. We propose that Dlg1 acts primarily to recruit LGN to the cortex and that Dlg1 localization may additionally provide instructive cues for spindle orientation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Polaridad Celular/genética , Epitelio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Huso Acromático/genética , Animales , Línea Celular Tumoral , Embrión de Pollo , Homólogo 1 de la Proteína Discs Large , Células HeLa , Humanos , Mitosis , Interferencia de ARN , ARN Interferente Pequeño
8.
PLoS Genet ; 7(10): e1002302, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22046139

RESUMEN

Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.


Asunto(s)
Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula/genética , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Mutación , Proteínas Nucleares/química , Estructura Terciaria de Proteína/genética , Factores de Transcripción/química , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
9.
J Cell Biol ; 193(1): 141-54, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21444683

RESUMEN

To maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation in chick neuroepithelial cells. The mitotic spindle displays stereotypic movements during metaphase, with an active phase of planar orientation and a subsequent phase of planar maintenance before anaphase. We describe the localization of the NuMA and LGN proteins in a belt at the lateral cell cortex during spindle orientation. Finally, we show that the complex formed of LGN, NuMA, and of cortically located Gαi subunits is necessary for spindle movements and regulates the dynamics of spindle orientation. The restricted localization of LGN and NuMA in the lateral belt is instructive for the planar alignment of the mitotic spindle, and required for its planar maintenance.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitosis , Células Neuroepiteliales/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Huso Acromático/metabolismo , Corteza Visual/metabolismo , Animales , Proteínas de Ciclo Celular , División Celular , Embrión de Pollo , Pollos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas de Complejo Poro Nuclear/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Proc Natl Acad Sci U S A ; 108(6): 2276-81, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262810

RESUMEN

Hox genes encode transcription factors widely used for diversifying animal body plans in development and evolution. To achieve functional specificity, Hox proteins associate with PBC class proteins, Pre-B cell leukemia homeobox (Pbx) in vertebrates, and Extradenticle (Exd) in Drosophila, and were thought to use a unique hexapeptide-dependent generic mode of interaction. Recent findings, however, revealed the existence of an alternative, UbdA-dependent paralog-specific interaction mode providing diversity in Hox-PBC interactions. In this study, we investigated the basis for the selection of one of these two Hox-PBC interaction modes. Using naturally occurring variations and mutations in the Drosophila Ultrabithorax protein, we found that the linker region, a short domain separating the hexapeptide from the homeodomain, promotes an interaction mediated by the UbdA domain in a context-dependent manner. While using a UbdA-dependent interaction for the repression of the limb-promoting gene Distalless, interaction with Exd during segment-identity specification still relies on the hexapeptide motif. We further show that distinctly assembled Hox-PBC complexes display subtle but distinct repressive activities. These findings identify Hox-PBC interaction as a template for subtle regulation of Hox protein activity that may have played a major role in the diversification of Hox protein function in development and evolution.


Asunto(s)
Proteínas de Drosophila/metabolismo , Evolución Molecular , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Homeodominio/genética , Estructura Terciaria de Proteína , Factores de Transcripción/genética
11.
Bioessays ; 31(5): 500-11, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19334006

RESUMEN

Hox proteins are part of the conserved superfamily of homeodomain-containing transcription factors and play fundamental roles in shaping animal body plans in development and evolution. However, molecular mechanisms underlying their diverse and specific biological functions remain largely enigmatic. Here, we have analyzed Hox sequences from the main evolutionary branches of the Bilateria group. We have found that four classes of Hox protein signatures exist, which together provide sufficient support to explain how different Hox proteins differ in their control and function. The homeodomain and its surrounding sequences accumulate nearly all signatures, constituting an extended module where most of the information distinguishing Hox proteins is concentrated. Only a small fraction of these signatures has been investigated at the functional level, but these show that approaches relying on Hox protein alterations still have a large potential for deciphering molecular mechanisms of Hox differential control.


Asunto(s)
Proteínas de Homeodominio/química , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Homología de Secuencia de Aminoácido
12.
Proc Natl Acad Sci U S A ; 104(43): 16946-51, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17942685

RESUMEN

Hox transcription factors are essential for shaping body morphology in development and evolution. The control of Hox protein activity in part arises from interaction with the PBC class of partners, pre-B cell transcription factor (Pbx) proteins in vertebrates and Extradenticle (Exd) in Drosophila. Characterized interactions occur through a single mode, involving a short hexapeptide motif in the Hox protein. This apparent uniqueness in Hox-PBC interaction provides little mechanistic insight in how the same cofactors endow Hox proteins with specific and diverse activities. Here, we identify in the Drosophila Ultrabithorax (Ubx) protein a short motif responsible for an alternative mode of Exd recruitment. Together with previous reports, this finding highlights that the Hox protein Ubx has multiple ways to interact with the Exd cofactor and suggests that flexibility in Hox-PBC contacts contributes to specify and diversify Hox protein function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteína con Homeodominio Antennapedia/química , Proteína con Homeodominio Antennapedia/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/química , Modelos Biológicos , Datos de Secuencia Molecular , Transporte de Proteínas , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismo , Eliminación de Secuencia , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...