Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 158: 110036, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35421678

RESUMEN

Protein aggregation can affect the stability and function of proteins, and may lead to developing diseases, but reports on the in vivo effect of aggregates are scarce. In the current study, the effect of phenylalanine (Phe) and indole presence was first investigated on the structure and stability of human lysozyme (HLZ) and its aggregation under in vitro condition. Tm measurements, circular dichroism and spectrofluorimetric spectra, as well as and transmission electron microscopy (TEM) were performed in this stage. In the next step, pathogenicity of HLZ amorphous aggregates formed in presence or absence of the additives was investigated in vivo, by subcutaneous injection to adult male Wistar rats. Resulting inflamed tissues were studied by hematoxylin and eosin (HE), Congo red and Sudan black staining. Serum levels of liver enzymes (Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST)), specific inflammatory cytokines (Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6)) as well as glucose, cholesterol, and triglyceride levels were measured. Amorphous aggregates of HLZ caused inflammation and affected the number of fat cells, macrophages, cytokines, liver enzymes and glucose. Indole, that increases amorphous aggregates amount as shown with CD, fluorescence, and TEM experiments, leads into more severe inflammation. In presence of Phe, (which stabilizes HLZ structure) a markedly milder inflammatory state is observed in histological results and no increase could be detected in the inflammation-related parameters. In conclusion, amorphous aggregates of HLZ may be pathogenic in vivo, and presence of anti-aggregation compounds (such as Phe) can be effective in diminishing their deleterious manifestations.


Asunto(s)
Muramidasa , Fenilalanina , Animales , Citocinas/metabolismo , Glucosa/metabolismo , Humanos , Indoles/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Masculino , Muramidasa/química , Fenilalanina/metabolismo , Ratas , Ratas Wistar , Virulencia
2.
Appl Biochem Biotechnol ; 189(1): 305-317, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30980288

RESUMEN

The effect of 16 amino acids (AA) with various physicochemical properties was investigated on human lysozyme (HL) heat-induced amorphous aggregation. UV-Visible spectrophotometry was used to monitor the kinetics of aggregation in the absence and presence of AA, and transmission electron microscopy (TEM) images were taken from the aggregates. To conduct in silico experiments, Autodock vina was used for docking of AA into protein (via YASARA interface), and FTmap information was checked for an insight onto putative binding sites. Prediction of aggregation-prone regions of lysozyme was made by AGGRESCAN and Tango. Among all tested AA, phenylalanine had the best anti-aggregation effect, followed by lysine. In addition, based on in silico tests, Trp 109 and Val 110 of lysozyme are suggested to be of importance in the aggregation process of the enzyme. In conclusion, phenylalanine, arginine, and lysine were found to affect the nucleation phase of lysozyme aggregation and could be considered as suitable stabilizing structures for this enzyme.


Asunto(s)
Aminoácidos/administración & dosificación , Muramidasa/metabolismo , Simulación por Computador , Humanos , Técnicas In Vitro , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...