Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(7): 4314-4323, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36744281

RESUMEN

Massive tonnes of fibrous residues are produced during the harvesting of the Enset plant for food preparation. The fibers are characterized by high cellulose and hemicellulose content and low lignin and extractive content. These make the fiber a good candidate for its concurrent valorization aimed at dissolving grade pulp and biogas. Prehydrolysis soda pulping was performed using steam pretreatment as a prehydrolysis step at a severity ranging from 2.95 to 4.13. The steamed fiber (PH fiber) was subjected to subsequent soda pulping under mild (160 °C and 16% alkali concentration) and severe (180 °C and 24% alkali concentration) pulping conditions. At higher steaming severity, a pulp with a xylose content of <4% and glucose content of 96% was obtained. A simple bleaching stage was envisaged to develop oxygen-peroxide (OQP1), oxygen-double peroxide (OQP2P2, and OQP2P3) and oxygen-peroxide-chlorine dioxide (OQP2D) sequences. Brightnesses up to ∼85% ISO could be reached for all sequences with CUEN viscosities of ∼350-500 ml g-1. Higher viscosities with higher brightness were achieved mainly by OQP2D sequence. However, even with OQP1 and OQP2P3 sequences the pulps met the requirements for lyocell production. An intense steam treatment reduces the biochemical methane potential (BMP) of prehydrolysis liquid (PHL) from 462 ml g-1 vs to 315 ml g-1 vs. The reduction might be due to the inhibition effect of furan concentration increase in the corresponding PHL from 2 ppm to 24 ppm. However, due to the higher yield and carbohydrate concentration of the prehydrolysis liquid, the biogas production volumes per initial raw material were still higher at higher steaming severity.

2.
Front Chem ; 9: 779609, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869228

RESUMEN

Street tree pruning residues are a widely available and currently undervalorized bioresource. Their utilization could help alleviate an increasing biomass shortage and offset costs of the pruning process for the municipalities. In this work, a holistic valorization pathway of pruning residues leading to fibers, oligosaccharides, biogas, and compost is presented. For this, representative mixtures of tree pruning materials from the most prevalent street tree genera (oak, linden, maple) found in Hamburg (Germany) were prepared by shredding and cleaning procedures. Collection of sample material was performed in summer and winter to account for seasonality. A steam-based fractionation was conducted using treatment severities ranging from log R0 = 2.5 to 4.0. At the highest severity, a fiber yield of around 66%, and liquor yield of 26-30% was determined. The fibers were evaluated with respect to their properties for paper product applications, with higher treatment severities leading to higher paper strengths. From the oligosaccharide-rich liquor, emulsions were created, which showed promising stability properties over 8 weeks of storage. The liquors and the rejects from the material preparation also displayed good potential for biomethane production. Overall, the differences between material collected in summer and winter were found to be small, indicating the possibility for a year-round utilization of pruning residues. For the presented utilization pathway, high severity treatments were the most promising, featuring a high liquor yield, good biomethane potential, and the highest paper strengths.

3.
Front Chem ; 9: 760657, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722463

RESUMEN

The utilization of agricultural products and residues for the production of value-added and biobased products is a highly relevant topic in present research. Due to the natural recalcitrance of lignocellulosic biomass against enzymatic degradation, pretreatments are important requirement for further processes. For the raw material in this study, corn stover (CS) as highly available agricultural residue and maize silage (MS) as model substrate for an ensiled agricultural product were pretreated by steam refining. However, after processing a liquid fraction and fibers are present. Subsequent to steaming the fiber fraction is well characterized. Nonetheless, in depth characterizations of the filtrates are also important for their subsequent utilization. Decreasing molar masses from 7,900 g/mol to 1,100 g/mol for CS filtrates and 100.000-12.900 g/mol for MS filtrates were determined with increasing severity. Due to their proven inhibitory effect on microorganisms weak acids, furans and phenolic compounds within the liquid phased were analyzed. Especially formic acid increases with increasing severity from 0.27 to 1.20% based on raw material for CS and from 0.07 to 0.23% based on raw material for MS. Further GC/MS measurements indicate, that up to 8.25% (CS filtrate) and 5.23% (MS filtrates) of the total peak area is related to inhibitory phenols. Considering the data, detoxification strategies are of non-negligible importance for filtrates after steam refining and should be considered for further research and process or parameter optimizations. An alternative may be the application of milder process conditions in order to prevent the formation of inhibitory degradation products or the dilution of the gained filtrates.

4.
Sci Rep ; 11(1): 6461, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742068

RESUMEN

In this work, we present an approach to cross-link cellulose nanofibrils (CNFs) with various metallic cations (Fe3+, Al3+, Ca2+, and Mg2+) to produce inks suitable for three-dimensional (3D) printing application. The printability of each hydrogel ink was evaluated, and several parameters such as the optimal ratio of Mn+:TOCNF:H2O were discussed. CNF suspensions were produced by mechanical disintegration of cellulose pulp with a microfluidizer and then oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Finally, metal cations were introduced to the deprotonated TEMPO-oxidized CNF (TOCNF) suspension to cross-link the nanofibrils and form the corresponding hydrogels. The performances of each gel-ink were evaluated by rheological measurements and 3D printing. Only the gels incorporated with divalent cations Ca2+ and Mg2+ were suitable for 3D printing. The 3D printed structures were freeze-dried and characterized with Fourier transform infrared spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). The better interaction of the TOCNFs with the divalent metallic cations in terms of printability, the viscoelastic properties of the inks, and the variation trends owing to various metal cations and ratios are discussed.

5.
Molecules ; 25(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352640

RESUMEN

Maize, also called corn, is one of the most available feedstocks worldwide for lignocellulosic biorefineries. However, a permanent biomass supply over the year is essential for industrial biorefinery application. In that context, ensiling is a well-known agricultural application to produce durable animal feed for the whole year. In this study, ensiled maize was used for steam refining experiments with subsequent enzymatic hydrolysis using the Cellic® CTec2 to test the application possibilities of an ensiled material for the biorefinery purpose of fermentable carbohydrate production. Steam refining was conducted from mild (log R0 = 1.59) to severe conditions (log R0 = 4.12). The yields were determined, and the resulting fractions were characterized. Hereafter, enzymatic hydrolysis of the solid fiber fraction was conducted, and the carbohydrate recovery was calculated. A conversion to monomers of around 50% was found for the mildest pretreatment (log R0 = 1.59). After pretreatment at the highest severity of 4.12, it was possible to achieve a conversion of 100% of the theoretical available carbohydrates. From these results, it is clear that a sufficient pretreatment is necessary to achieve sufficient recovery rates. Thus, it can be concluded that ensiled maize pretreated by steam refining is a suitable and highly available feedstock for lignocellulosic biorefineries. Ultimately, it can be assumed that ensiling is a promising storage method to pave the way for a full-year biomass supply for lignocellulosic biorefinery concepts.


Asunto(s)
Carbohidratos/química , Fermentación/fisiología , Zea mays/química , Zea mays/metabolismo , Alimentación Animal , Biomasa , Celulosa/química , Celulosa/metabolismo , Fibras de la Dieta/metabolismo , Hidrólisis , Ensilaje , Vapor
6.
Molecules ; 25(9)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380784

RESUMEN

In view of the expected increase in available waste medium-density fiberboard (MDF) and the current insufficient and unsatisfactory disposal capacities, efficient ways of recycling the waste material need to be developed. In this study, the potential of steam refining as a method to hydrolyze the resins, isolate fibers, and obtain a hemicellulose-rich extract available for further utilization in the context of a biorefinery was assessed. Two different MDF waste samples, as well as poplar (Populus spp.) and spruce (Picea spp.) wood chips for benchmarking, were treated over a severity range from 2.47 to 3.95. The separated fiber and extract fractions were analyzed with regard to yield, content of carbohydrates, acids, degradation products, and nitrogen. A fiber fraction of more than 70% yield and an extract containing up to 30% of carbohydrates for further processing can be gained by steam-refining waste MDF. At low severities, most of the nitrogen-based compounds are solubilized. Increasing the severity leads to a decrease in nitrogen in the extract as the nitrogen compounds are converted into volatiles. A non-hydrolysable resin residue remains on the fibers, independent of the treatment severity. In comparison to the benchmark samples, the extract fraction of waste MDF shows a high pH of 8 and high amounts of acetic and formic acid. The generation of furfural and 5-hydroxymethylfurfural (5-HMF) on the other hand is suppressed. Distinct differences in carbohydrate hydrolysis behavior between waste MDF and conventional wood can be observed. Especially, the mannose-containing constituents seem to be resistant to hydrolysis reactions in the milieu created in MDF fractionation.


Asunto(s)
Picea/química , Polisacáridos/química , Populus/química , Vapor/análisis , Carbohidratos/análisis , Fraccionamiento Químico , Hidrólisis , Nitrógeno/análisis , Reciclaje , Residuos , Madera/química
7.
Biomacromolecules ; 21(5): 1952-1961, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32223221

RESUMEN

This paper investigates a strategy to convert hydrophilic cellulose nanofibrils (CNF) into a hydrophobic highly cross-linked network made of cellulose nanofibrils and inorganic nanoparticles. First, the cellulose nanofibrils were chemically modified through an esterification reaction to produce a nanocellulose-based macroinitiator. Barium titanate (BaTiO3, BTO) nanoparticles were surface-modified by introducing a specific monomer on their outer-shell surface. Finally, we studied the ability of the nanocellulose-based macroinitiator to initiate a single electron transfer living radical polymerization of stearyl acrylate (SA) in the presence of the surface-modified nanoparticles. The BTO nanoparticles will transfer new properties to the nanocellulose network and act as a cross-linking agent between the nanocellulose fibrils, while the monomer (SA) directly influences the hydrophilic-lipophilic balance. The pristine CNF and the nanoparticle cross-linked CNF are characterized by FTIR, SEM, and solid-state 13C NMR. Rheological and dynamic mechanical analyses revealed a high dregee of cross-linking.


Asunto(s)
Nanofibras , Nanopartículas , Celulosa , Interacciones Hidrofóbicas e Hidrofílicas , Polimerizacion
8.
Environ Technol ; 39(21): 2810-2821, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28791917

RESUMEN

This work focused on the enzymatic treatment of deinking sludge (DS), a waste stream arising from German deinked pulp mills. Three industrial DS samples were characterised with respect to chemical composition and fibre morphology. In this study, four cellulase enzyme preparations were tested under neutral pH conditions and one cellulase was identified as suitable for DS conditioning with no need of pH adjustment. Additionally, our approach shows that inorganic particles contained in the DS samples do not negatively affect cellulase activity, as illustrated by respectable hydrolysis yields of up to 61%. Enzymatic treatment of DS led to fibre shortening and fibre fines generation with increasing enzyme dose and incubation time. The dewaterability of enzyme-treated DS samples was tested and the results showed that high amounts of fibre fines enhanced filter cake consolidation during dewatering, resulting in higher cake solids. A 10-14 percentage point increase in cake solids was obtained depending upon the enzyme dose applied, the origin of the DS sample, and the exposure period. Through the enzymatic treatment the annually generated amount of DS in Germany could be reduced by up to 20%, which would mean considerable disposal cost savings.


Asunto(s)
Celulasa , Aguas del Alcantarillado , Alemania , Concentración de Iones de Hidrógeno , Hidrólisis , Eliminación de Residuos Líquidos
9.
J Appl Phycol ; 29(6): 3121-3137, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213185

RESUMEN

Fucoidans are sulphated fucose-rich polysaccharides predominantly found in the cell walls of brown algae. The bioactive properties of fucoidans attract increasing interest from the medico-pharmaceutical industries and may drive an increase in demand of brown algae biomass. In nature, the biochemical composition of brown algae displays a seasonal fluctuation driven by environmental factors and endogenous rhythms. To cultivate and harvest kelps with high yields of fucoidans, knowledge is needed on seasonal variation and impact of environmental conditions on the fucoidan content of brown algae. The relations between the fucoidan content and key environmental factors (irradiance, nutrient availability, salinity and exposure) were examined by sampling natural populations of the common North Atlantic kelps, Saccharina latissima and Laminaria digitata, over a full year at Hanstholm in the North Sea and Aarhus in the Kattegat. In addition, laboratory experiments were carried out isolating the effects of the single factors. The results demonstrated that (1) seasonal variation alters the fucoidan content by a factor of 2-2.6; (2) interspecific differences exist in the concentrations of crude fucoidan (% of dry matter): L. digitata (11%) > S. latissima (6%); and (3) the effects of single environmental factors were not consistent between species or between different conspecific populations. The ambiguous response to single environmental factors complicates prospective directions for manipulating an increased content of fucoidan in a cultivation scenario and emphasizes the need for knowledge on performance of local kelp ecotypes.

10.
Carbohydr Polym ; 175: 671-678, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917916

RESUMEN

The chemical structures obtained by the modification of arabinoxylans with the cyclic carbonates propylene carbonate (PC) and 4-vinyl-1,3-dioxolan-2-one (VEC) with varying degrees of substitution were investigated. Therefore, a new analytical method was developed that is based on a microwave-assisted hydrolysis of the polysaccharides with trifluoroacetic acid and the reductive amination with 2-aminobenzoic acid. The peak assignment was achieved by HPLC-MS and the carbohydrate derivatives were quantified by HPLC-fluorescence. The obtained maximum molar substitution of PC-derivatized xylan (XHP) was 1.8; the molar substitution of VEC-derivatized xylan (XHVE) was 2.3. Investigations of xylose and arabinose based mono- and disubstituted derivatives revealed a preferred reaction of the cyclic carbonates with arabinose. Conversion rates were up to 2.4 times higher for monosubstitution and up to 3.0 times for disubstitution compared to xylose. Furthermore, the reaction with VEC was preferred due to higher reactivity of the newly introduced side chains.

11.
ChemSusChem ; 10(16): 3212-3224, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28644517

RESUMEN

The transformation of lignocellulosic biomass into bio-based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic-rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio-compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13 C-enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of "primary" fast pyrolysis volatiles detected by using GC-MS between two small-scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid-state 13 C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids.


Asunto(s)
Celulosa/química , Lignina/química , Polisacáridos/química , Biomasa , Carbono/química , Catálisis , Celulosa/aislamiento & purificación , Calor , Cinética , Lignina/aislamiento & purificación , Polisacáridos/aislamiento & purificación
12.
Sci Rep ; 7: 40262, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071716

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that breakdown recalcitrant polysaccharides such as cellulose. Here we investigate the action of LPMOs on cellulose fibers. After enzymatic treatment and dispersion, LPMO-treated fibers show intense fibrillation. Cellulose structure modifications visualized at different scales indicate that LPMO creates nicking points that trigger the disintegration of the cellulose fibrillar structure with rupture of chains and release of elementary nanofibrils. Investigation of LPMO action using solid-state NMR provides direct evidence of modification of accessible and inaccessible surfaces surrounding the crystalline core of the fibrils. The chains breakage likely induces modifications of the cellulose network and weakens fibers cohesion promoting their disruption. Besides the formation of new initiation sites for conventional cellulases, this work provides the first evidence of the direct oxidative action of LPMOs with the mechanical weakening of the cellulose ultrastructure. LPMOs can be viewed as promising biocatalysts for enzymatic modification or degradation of cellulose fibers.


Asunto(s)
Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Celulosa/química , Celulosa/ultraestructura , Madera/química , Madera/enzimología
13.
ACS Appl Mater Interfaces ; 8(21): 13520-5, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27163488

RESUMEN

A facile approach to obtaining cellulose nanofiber-reinforced polystyrene with greatly improved mechanical performance compared to unreinforced polystyrene is presented. Cellulose nanofibers were obtained by mechanical fibrillation of partially delignified wood (MFLC) and compared to nanofibers obtained from bleached pulp. Residual hemicellulose and lignin imparted amphiphilic surface chemical character to MFLC, which enabled the stabilization of emulsions of styrene in water. Upon suspension polymerization of styrene from the emulsion, polystyrene microspheres coated in MFLC were obtained. When processed into polymer sheets by hot-pressing, improved bending strength and superior impact toughness was observed for the polystyrene-MFLC composite compared to the un-reinforced polystyrene.

14.
Carbohydr Polym ; 140: 181-7, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26876842

RESUMEN

A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Monosacáridos/análisis , Oligosacáridos/análisis , Espectrofotometría Ultravioleta/métodos , Ácidos Urónicos/análisis , Xilanos/química , Electroquímica , Hidrólisis , Límite de Detección , Monosacáridos/química , Oligosacáridos/química , Ácidos Urónicos/química
15.
Bioresour Technol ; 200: 506-13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26520490

RESUMEN

Fines concentration harms paper machine runability and output quality in recovered paper processing, hence, their extraction would be fundamentally beneficial. In this study, separated fines from an industrial recycled fiber pulp (RFP) were characterized and evaluated for their potential biogas yields with a focus on understanding the role of varying lignin and ash contents. Further, these results were compared with biogas yields from conventional chemical and mechanical pulps. Overall, methane yields of fines from mechanical pulps (21-28mL/gVS) and RFP (127mL/gVS) are relatively low compared to the high methane yields of 375mL/gVS from the chemical pulp fines. However, it was shown that the high ash content in RFP fines (up to 50%) did not negatively influence overall yield, rather, it was the presence of slowly biodegrading lignin-rich fiber fines.


Asunto(s)
Biocombustibles , Lignina/química , Metano/química , Papel , Eliminación de Residuos/métodos , Anaerobiosis , Carbohidratos/química , Cristalización , Fibras de la Dieta , Residuos Industriales , Aguas del Alcantarillado , Temperatura
16.
Polymers (Basel) ; 8(7)2016 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-30974531

RESUMEN

A new route towards embedding fibrillated cellulose in a non-polar thermoset matrix without any use of organic solvent or chemical surface modification is presented. It is shown that microfibrillated lignocellulose made from cellulose with high residual lignin content is capable of stabilising an emulsion of unsaturated polyester resin in water due to its amphiphilic surface-chemical character. Upon polymerisation of the resin, thermoset microspheres embedded in a microfibrillated cellulose network are formed. The porous network structure persists after conventional drying in an oven, yielding a mechanically stable porous material. In an application experiment, the porous material was milled into a fine powder and added to the polyester matrix of a glass fibre-reinforced composite. This resulted in a significant improvement in fracture toughness of the composite, whereas a reduction of bending strength and stiffness was observed in parallel.

17.
Phytochemistry ; 120: 53-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26547588

RESUMEN

Condensed tannins extracted from European softwood bark are recognized as alternatives to synthetic phenolics. The extraction is generally performed in hot water, leading to simultaneous extraction of other bark constituents such as carbohydrates, phenolic monomers and salts. Characterization of the extract's composition and identification of the extracted tannins' molecular structure are needed to better identify potential applications. Bark from Silver fir (Abies alba [Mill.]), European larch (Larix decidua [Mill.]), Norway spruce (Picea abies [Karst.]), Douglas fir (Pseudotsuga menziesii [Mirb.]) and Scots pine (Pinus sylvestris [L.]) were extracted in water at 60°C. The amounts of phenolic monomers, condensed tannins, carbohydrates, and inorganic compounds in the extract were determined. The molecular structures of condensed tannins and carbohydrates were also investigated (HPLC-UV combined with thiolysis, MALDI-TOF mass spectrometry, anion exchange chromatography). Distinct extract compositions and tannin structures were found in each of the analysed species. Procyanidins were the most ubiquitous tannins. The presence of phenolic glucosides in the tannin oligomers was suggested. Polysaccharides such as arabinans, arabinogalactans and glucans represented an important fraction of all extracts. Compared to traditionally used species (Mimosa and Quebracho) higher viscosities as well as faster chemical reactivities are expected in the analysed species. The most promising species for a bark tannin extraction was found to be larch, while the least encouraging results were detected in pine. A better knowledge of the interaction between the various extracted compounds is deemed an important matter for investigation in the context of industrial applications of such extracts.


Asunto(s)
Picea/química , Taninos/aislamiento & purificación , Agua/metabolismo , Biflavonoides , Catequina , Cromatografía Líquida de Alta Presión , Flavonoides , Glucósidos/química , Calor , Estructura Molecular , Noruega , Pinus , Corteza de la Planta/química , Extractos Vegetales/química , Proantocianidinas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Taninos/química
18.
J Agric Food Chem ; 62(45): 10978-88, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25345843

RESUMEN

A variety of Cistus incanus products and thereof a majority of herbal teas are offered by manufacturers despite a classification as Novel Food. For a re-evaluation of this legal status, a characterization of bioactive ingredients will provide data. These teas consist of various compositions of plant parts and particle sizes. Whereas some include high leaf contents with a small particle size, others mainly consist of woody stem parts. For the consumer it is of interest which product yields the highest concentrations of bioactive phenolic compounds in the final infusions. In this study, four commercially available samples were divided into leaves and stems. Additionally, one sample was reconstituted in three mixtures of these plant parts. The amount of wood was determined by cellulose concentration. The aim was to estimate the influence of the plant parts on the concentration of phenolic compounds, which were identified by LC-DAD-ESI-MS/MS and quantitated by LC-DAD. Furthermore, one herbal tea was separated into six fractions with different particle sizes to investigate the influence of particle size on the extractability of phenolic compounds. On basis of the results, the highest concentrations of bioactive compounds in the infusions were yielded when leafy parts with a small particle size were used for brewing.


Asunto(s)
Bebidas/análisis , Cistus/química , Manipulación de Alimentos/métodos , Fenoles/química , Fenoles/aislamiento & purificación , Hojas de la Planta/química , Espectrometría de Masas , Tamaño de la Partícula
19.
Carbohydr Polym ; 102: 627-35, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24507328

RESUMEN

Xylan from oat spelt and wheat was used as an additive to enhance the dry strength of paper. The absorption of xylan by the cellulose fibers was increased by cationization to different degrees of substitution. Paper hand sheets with different doses of xylan and industrial cationic starch were produced, and the mechanical properties were determined. Absorption measurements of cationic oat spelt xylan on pulp fibers explained the differing influences of low and high cationized xylan addition on paper strength. The addition of cationic oat spelt xylan with a degree of substitution of 0.1 at a 4% dose provided the largest improvement in the tensile-index (67%), burst-index (105%) and tear-index (77%). Compared to cationic starch, cationic oat spelt xylan additives led to similar paper strength values, excepting the tear strength. The structural differences and protein impurities made the wheat xylan unsuitable as a strength additive for paper pulp.


Asunto(s)
Papel , Xilanos/farmacología , Absorción , Cationes , Almidón/química , Propiedades de Superficie , Xilanos/aislamiento & purificación
20.
Carbohydr Polym ; 100: 202-10, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24188855

RESUMEN

Steam refining of non-debarked spruce forest residues was investigated as pretreatment for enzymatic hydrolysis as well as for biogas production. Pretreatment conditions were varied in the range of 190-220 °C, 5-10 min and 0-3.7% SO2 according to a statistical design. For both applications highest product yields were predicted at 220 °C and 2.4% SO2, whereas the reaction time had only a minor influence. The conformity of the model results allows the conclusion that enzymatic hydrolysis is a suitable test method to evaluate the degradability of lignocellulosic biomass in the biogas process. In control experiments under optimal conditions the results of the model were verified. The yield of total monomeric carbohydrates after enzymatic hydrolysis was equivalent to 55% of all theoretically available polysaccharides. The corresponding biogas yield from the pretreated wood amounted to 304 mL/gODM. Furthermore, furans produced under optimal process conditions showed no inhibitory effect on biogas production. It can be concluded that steam refining opens the structure of wood, thus improving the enzymatic hydrolysis of the polysaccharides to fermentable monomeric sugars and subsequently enabling a higher and faster production of biogas. Anaerobic fermentation of pretreated wood is a serious alternative to alcoholic fermentation especially when low quality wood grades and residues are used. Anaerobic digestion should be further investigated in order to diversify the biorefinery options for lignocellulosic materials.


Asunto(s)
Biocombustibles , Celulasa/metabolismo , Picea/química , Árboles/química , beta-Glucosidasa/metabolismo , Furaldehído/análogos & derivados , Furaldehído/química , Hidrólisis , Modelos Estadísticos , Dióxido de Azufre/química , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...