Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 135(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36245272

RESUMEN

MUNC18-1 (also known as syntaxin-binding protein-1, encoded by Stxbp1) binds to syntaxin-1. Together, these proteins regulate synaptic vesicle exocytosis and have a separate role in neuronal viability. In Stxbp1 null mutant neurons, syntaxin-1 protein levels are reduced by 70%. Here, we show that dynamin-1 protein levels are reduced at least to the same extent, and transcript levels of Dnm1 (which encodes dynamin-1) are reduced by 50% in Stxbp1 null mutant brain. Several, but not all, other endocytic proteins were also found to be reduced, but to a lesser extent. The reduced dynamin-1 expression was not observed in SNAP25 null mutants or in double-null mutants of MUNC13-1 and -2 (also known as Unc13a and Unc13b, respectively), in which synaptic vesicle exocytosis is also blocked. Co-immunoprecipitation experiments demonstrated that dynamin-1 and MUNC18-1 do not bind directly. Furthermore, MUNC18-1 levels were unaltered in neurons lacking all three dynamin paralogues. Finally, overexpression of dynamin-1 was not sufficient to rescue neuronal viability in Stxbp1 null mutant neurons; thus, the reduction in dynamin-1 is not the single cause of neurodegeneration of these neurons. The reduction in levels of dynamin-1 protein and mRNA, as well as of other endocytosis proteins, in Stxbp1 null mutant neurons suggests that MUNC18-1 directly or indirectly controls expression of other presynaptic genes.


Asunto(s)
Dinamina I , Proteínas Munc18 , Dinamina I/genética , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Neuronas/metabolismo , Exocitosis/fisiología
2.
iScience ; 25(4): 104069, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35372812

RESUMEN

FBXO41 is a neuron-specific E3 ligase subunit implicated in epileptic encephalopathies. Fbxo41 null mutant (KO) mice show behavioral deficits and early lethality. Here, we report that loss of FBXO41 causes defects in synaptic transmission and brain development. Cultured Fbxo41 KO neurons had normal morphology and showed no signs of degeneration. Single-cell electrophysiology showed a lower synaptic vesicle release probability in excitatory neurons. Inhibitory neurons exhibited reduced synaptophysin expression, a smaller readily releasable pool, and decreased charge transfer during repetitive stimulation. In Fbxo41 KO hippocampal slices at postnatal day 6, the dentate gyrus was smaller with fewer radial-glial-like cells and immature neurons. In addition, neuronal migration was delayed. Two-photon calcium imaging showed a delayed increase in network activity and synchronicity. Together, our findings point toward a role for FBXO41 in synaptic transmission and postnatal brain development, before behavioral deficits are detected in Fbxo41 KO mice.

3.
Sci Rep ; 10(1): 3181, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081899

RESUMEN

Phosphorylation of Munc18-1 (Stxbp1), a presynaptic organizer of synaptic vesicle fusion, is a powerful mechanism to regulate synaptic strength. Munc18-1 is a proposed substrate for the Down Syndrome-related kinase dual-specificity tyrosine phosphorylation-regulate kinase 1a (Dyrk1a) and mutations in both genes cause intellectual disability. However, the functional consequences of Dyrk1a-dependent phosphorylation of Munc18-1 for synapse function are unknown. Here, we show that the proposed Munc18-1 phosphorylation site, T479, is among the highly constrained phosphorylation sites in the coding regions of the gene and is also located within a larger constrained coding region. We confirm that Dyrk1a phosphorylates Munc18-1 at T479. Patch-clamp physiology in conditional null mutant hippocampal neurons expressing Cre and either wildtype, or mutants mimicking or preventing phosphorylation, revealed that synaptic transmission is similar among the three groups: frequency/amplitude of mEPSCs, evoked EPSCs, paired pulse plasticity, rundown kinetics upon intense activity and the readily releasable pool. However, synapses expressing the phosphomimic mutant responded to intense activity with more pronounced facilitation. These data indicate that Dyrk1a-dependent Munc18-1 phosphorylation has a minor impact on synaptic transmission, only after intense activity, and that the role of genetic variation in both genes in intellectual disability may be through different mechanisms.


Asunto(s)
Síndrome de Down/enzimología , Proteínas Munc18/genética , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transmisión Sináptica , Animales , Supervivencia Celular , Células HEK293 , Humanos , Ratones , Proteínas Munc18/deficiencia , Proteínas Munc18/metabolismo , Neuronas/metabolismo , Neuronas/patología , Sistemas de Lectura Abierta/genética , Fosforilación , Treonina/metabolismo , Quinasas DyrK
4.
Sci Rep ; 9(1): 8179, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160656

RESUMEN

Neuronal primary cilia are signaling organelles with crucial roles in brain development and disease. Cilia structure is decisive for their signaling capacities but the mechanisms regulating it are poorly understood. We identify Fbxo41 as a novel Skp1/Cullin1/F-box (SCF) E3-ligase complex subunit that targets to neuronal centrioles where its accumulation promotes disassembly of primary cilia, and affects sonic hedgehog signaling, a canonical ciliary pathway. Fbxo41 targeting to centrioles requires its Coiled-coil and F-box domains. Levels of Fbxo41 at the centrioles inversely correlate with neuronal cilia length, and mutations that disrupt Fbxo41 targeting or assembly into SCF-complexes also disturb its function in cilia disassembly and signaling. Fbxo41 dependent cilia disassembly in mitotic and post-mitotic cells requires rearrangements of the actin-cytoskeleton, but requires Aurora A kinase activation only in mitotic cells, highlighting important mechanistical differences controlling cilia size between mitotic and post-mitotic cells. Phorbol esters induce recruitment of overexpressed Fbxo41 to centrioles and cilia disassembly in neurons, but disassembly can also occur in absence of Fbxo41. We propose that Fbxo41 targeting to centrosomes regulates neuronal cilia structure and signaling capacity in addition to Fbxo41-independent pathways controlling cilia size.


Asunto(s)
Cilios/genética , Proteínas F-Box/genética , Neuronas/metabolismo , Animales , Centriolos/genética , Centrosoma/metabolismo , Cilios/metabolismo , Humanos , Ratones , Células 3T3 NIH , Transducción de Señal/genética
5.
J Cell Sci ; 130(11): 1877-1889, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404788

RESUMEN

Neuronal dense-core vesicles (DCVs) transport and secrete neuropeptides necessary for development, plasticity and survival, but little is known about their fusion mechanism. We show that Snap-25-null mutant (SNAP-25 KO) neurons, previously shown to degenerate after 4 days in vitro (DIV), contain fewer DCVs and have reduced DCV fusion probability in surviving neurons at DIV14. At DIV3, before degeneration, SNAP-25 KO neurons show normal DCV fusion, but one day later fusion is significantly reduced. To test if other SNAP homologs support DCV fusion, we expressed SNAP-23, SNAP-29 or SNAP-47 in SNAP-25 KO neurons. SNAP-23 and SNAP-29 rescued viability and supported DCV fusion in SNAP-25 KO neurons, but SNAP-23 did so more efficiently. SNAP-23 also rescued synaptic vesicle (SV) fusion while SNAP-29 did not. SNAP-47 failed to rescue viability and did not support DCV or SV fusion. These data demonstrate a developmental switch, in hippocampal neurons between DIV3 and DIV4, where DCV fusion becomes SNAP-25 dependent. Furthermore, SNAP-25 homologs support DCV and SV fusion and neuronal viability to variable extents - SNAP-23 most effectively, SNAP-29 less so and SNAP-47 ineffectively.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Secretoras/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Animales , Transporte Biológico , Muerte Celular/genética , Embrión no Mamífero , Exocitosis , Regulación de la Expresión Génica , Prueba de Complementación Genética , Hipocampo/patología , Fusión de Membrana , Ratones , Ratones Noqueados , Neuronas/patología , Terminales Presinápticos/patología , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Vesículas Secretoras/patología , Transmisión Sináptica , Proteína 25 Asociada a Sinaptosomas/deficiencia
6.
EMBO J ; 35(11): 1236-50, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27056679

RESUMEN

Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Munc18/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica , Animales , Estimulación Eléctrica , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Hipocampo/fisiología , Humanos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Fosforilación , Embarazo , Ratas Wistar , Estrés Psicológico/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(18): 5095-100, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091977

RESUMEN

Presynaptic activation of the diacylglycerol (DAG)/protein kinase C (PKC) pathway is a central event in short-term synaptic plasticity. Two substrates, Munc13-1 and Munc18-1, are essential for DAG-induced potentiation of vesicle priming, but the role of most presynaptic PKC substrates is not understood. Here, we show that a mutation in synaptotagmin-1 (Syt1(T112A)), which prevents its PKC-dependent phosphorylation, abolishes DAG-induced potentiation of synaptic transmission in hippocampal neurons. This mutant also reduces potentiation of spontaneous release, but only if alternative Ca(2+) sensors, Doc2A/B proteins, are absent. However, unlike mutations in Munc13-1 or Munc18-1 that prevent DAG-induced potentiation, the synaptotagmin-1 mutation does not affect paired-pulse facilitation. Furthermore, experiments to probe vesicle priming (recovery after train stimulation and dual application of hypertonic solutions) also reveal no abnormalities. Expression of synaptotagmin-2, which lacks a seven amino acid sequence that contains the phosphorylation site in synaptotagmin-1, or a synaptotagmin-1 variant with these seven residues removed (Syt1(Δ109-116)), supports normal DAG-induced potentiation. These data suggest that this seven residue sequence in synaptotagmin-1 situated in the linker between the transmembrane and C2A domains is inhibitory in the unphosphorylated state and becomes permissive of potentiation upon phosphorylation. We conclude that synaptotagmin-1 phosphorylation is an essential step in PKC-dependent potentiation of synaptic transmission, acting downstream of the two other essential DAG/PKC substrates, Munc13-1 and Munc18-1.


Asunto(s)
Potenciales de Acción/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Proteína Quinasa C/metabolismo , Sinaptotagmina I/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/fisiología
8.
J Cell Biol ; 204(5): 759-75, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24590174

RESUMEN

Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon-synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.


Asunto(s)
Proteínas Munc18/análisis , Terminales Presinápticos/metabolismo , Proteína Quinasa C/metabolismo , Animales , Axones/metabolismo , Electrofisiología , Técnicas de Sustitución del Gen , Ratones , Proteínas Munc18/metabolismo , Transporte de Proteínas , Sinapsis/metabolismo , Sintaxina 1/metabolismo
9.
EMBO J ; 23(24): 4802-12, 2004 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-15538382

RESUMEN

Forkhead transcription factors of the FOXO class are negatively regulated by PKB/c-Akt in response to insulin/IGF signalling, and are involved in regulating cell cycle progression and cell death. Here we show that, in contrast to insulin signalling, low levels of oxidative stress generated by treatment with H2O2 induce the activation of FOXO4. Upon treatment of cells with H2O2, the small GTPase Ral is activated and this results in a JNK-dependent phosphorylation of FOXO4 on threonine 447 and threonine 451. This Ral-mediated, JNK-dependent phosphorylation is involved in the nuclear translocation and transcriptional activation of FOXO4 after H2O2 treatment. In addition, we show that this signalling pathway is also employed by tumor necrosis factor alpha to activate FOXO4 transcriptional activity. FOXO members have been implicated in cellular protection against oxidative stress via the transcriptional regulation of manganese superoxide dismutase and catalase gene expression. The results reported here, therefore, outline a homeostasis mechanism for sustaining cellular reactive oxygen species that is controlled by signalling pathways that can convey both negative (PI-3K/PKB) and positive (Ras/Ral) inputs.


Asunto(s)
Homeostasis , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Activación Enzimática , Factores de Transcripción Forkhead , Humanos , Peróxido de Hidrógeno/metabolismo , Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , Ratones Noqueados , Oxidantes/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Treonina/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Unión al GTP ral/genética
10.
Nature ; 419(6904): 316-21, 2002 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12239572

RESUMEN

Reactive oxygen species are required for cell proliferation but can also induce apoptosis. In proliferating cells this paradox is solved by the activation of protein kinase B (PKB; also known as c-Akt), which protects cells from apoptosis. By contrast, it is unknown how quiescent cells that lack PKB activity are protected against cell death induced by reactive oxygen species. Here we show that the PKB-regulated Forkhead transcription factor FOXO3a (also known as FKHR-L1) protects quiescent cells from oxidative stress by directly increasing their quantities of manganese superoxide dismutase (MnSOD) messenger RNA and protein. This increase in protection from reactive oxygen species antagonizes apoptosis caused by glucose deprivation. In quiescent cells that lack the protective mechanism of PKB-mediated signalling, an alternative mechanism is induced as a consequence of PKB inactivity. This mechanism entails the activation of Forkhead transcription factors, the transcriptional activation of MnSOD and the subsequent reduction of reactive oxygen species. Increased resistance to oxidative stress is associated with longevity. The model of Forkhead involvement in regulating longevity stems from genetic analysis in Caenorhabditis elegans, and we conclude that this model also extends to mammalian systems.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Factores de Transcripción/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis , Supervivencia Celular , Cromatina/metabolismo , Medio de Cultivo Libre de Suero , Proteínas de Unión al ADN/genética , Activación Enzimática/efectos de los fármacos , Inducción Enzimática , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Glucosa/metabolismo , Humanos , Insulina/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Longevidad/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Mutación/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...