Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Evol Lett ; 8(1): 89-100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370541

RESUMEN

Species are altering their ranges as a response to climate change, but the magnitude and direction of observed range shifts vary considerably among species. The ability to persist in current areas and colonize new areas plays a crucial role in determining which species will thrive and which decline as climate change progresses. Several studies have sought to identify characteristics, such as morphological and life-history traits, that could explain differences in the capability of species to shift their ranges together with a changing climate. These characteristics have explained variation in range shifts only sporadically, thus offering an uncertain tool for discerning responses among species. As long-term selection to past climates have shaped species' tolerances, metrics describing species' contemporary climatic niches may provide an alternative means for understanding responses to on-going climate change. Species that occur in a broader range of climatic conditions may hold greater tolerance to climatic variability and could therefore more readily maintain their historical ranges, while species with more narrow tolerances may only persist if they are able to shift in space to track their climatic niche. Here, we provide a first-filter test of the effect of climatic niche dimensions on shifts in the leading range edges in three relatively well-dispersing species groups. Based on the realized changes in the northern range edges of 383 moth, butterfly, and bird species across a boreal 1,100 km latitudinal gradient over c. 20 years, we show that while most morphological or life-history traits were not strongly connected with range shifts, moths and birds occupying a narrower thermal niche and butterflies occupying a broader moisture niche across their European distribution show stronger shifts towards the north. Our results indicate that the climatic niche may be important for predicting responses under climate change and as such warrants further investigation of potential mechanistic underpinnings.

2.
Evol Lett ; 8(1): 1-7, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370543

RESUMEN

When the notion of climate change emerged over 200 years ago, few speculated as to the impact of rising atmospheric temperatures on biological life. Tens of decades later, research clearly demonstrates that the impact of climate change on life on Earth is enormous, ongoing, and with foreseen effects lasting well into the next century. Responses to climate change have been widely documented. However, the breadth of phenotypic traits involved with evolutionary adaptation to climate change remains unclear. In addition, it is difficult to identify the genetic and/or epigenetic bases of phenotypes adaptive to climate change, in part because it often is not clear whether this change is plastic, genetic, or some combination of the two. Adaptive responses to climate-driven selection also interact with other processes driving genetic changes in general, including demography as well as selection driven by other factors. In this Special Issue, we explore the factors that will impact the overall outcome of climate change adaptation. Our contributions explain that traits involved in climate change adaptation include not only classic phenomena, such as range shifts and environmentally dependent sex determination, but also often overlooked phenomena such as social and sexual conflicts and the expression of stress hormones. We learn how climate-driven selection can be mediated via both natural and sexual selection, effectively influencing key fitness-related traits such as offspring growth and fertility as well as evolutionary potential. Finally, we explore the limits and opportunities for predicting adaptive responses to climate change. This contribution forms the basis of 10 actions that we believe will improve predictions of when and how organisms may adapt genetically to climate change. We anticipate that this Special Issue will inform novel investigations into how the effects of climate change unfold from phenotypes to genotypes, particularly as methodologies increasingly allow researchers to study selection in field experiments.

3.
Evol Lett ; 8(1): 172-187, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370544

RESUMEN

Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today. Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain, especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic resources, especially their extension to non-model species and the union of evolutionary experiments and "omics," should also enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will reduce the substantial uncertainties surrounding future evolutionary responses to climate change.

4.
Nat Commun ; 14(1): 5426, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704608

RESUMEN

Protected areas are considered fundamental to counter biodiversity loss. However, evidence for their effectiveness in averting local extinctions remains scarce and taxonomically biased. We employ a robust counterfactual multi-taxon approach to compare occupancy patterns of 638 species, including birds (150), mammals (23), plants (39) and phytoplankton (426) between protected and unprotected sites across four decades in Finland. We find mixed impacts of protected areas, with only a small proportion of species explicitly benefiting from protection-mainly through slower rates of decline inside protected areas. The benefits of protection are enhanced for larger protected areas and are traceable to when the sites were protected, but are mostly unrelated to species conservation status or traits (size, climatic niche and threat status). Our results suggest that the current protected area network can partly contribute to slow down declines in occupancy rates, but alone will not suffice to halt the biodiversity crisis. Efforts aimed at improving coverage, connectivity and management will be key to enhance the effectiveness of protected areas towards bending the curve of biodiversity loss.


Asunto(s)
Biodiversidad , Agua Dulce , Animales , Finlandia , Fenotipo , Fitoplancton , Mamíferos
5.
J Anim Ecol ; 92(6): 1113-1123, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087688

RESUMEN

Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade-offs, and testing the repeatability of evolutionary outcomes. Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short-lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco-evolutionary consequences of dispersal. We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes.


Asunto(s)
Evolución Biológica , Rasgos de la Historia de Vida , Animales , Dinámica Poblacional , Ecosistema
6.
Sci Rep ; 12(1): 11601, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804004

RESUMEN

Protected areas are a cornerstone for biodiversity conservation, and typically support more natural and undisturbed habitats compared to unprotected lands. The effect of protected areas on intra-specific ecological niche has been rarely investigated. Here, we explore potential differences in ecological niche properties of birds and mammals across protected and unprotected areas, and relate such differences to species traits. We combine two decades of survey data of birds and mammals from protected and unprotected areas, and apply robust matching to obtain a set of environmentally comparable protected and unprotected sites. Next, we calculate intra-specific niche volume change and habitat shift between protected and unprotected areas, and use generalized linear mixed models to explain these responses with species traits (habitat specialization, body mass, diet, and red list status). The majority of bird and mammal species (83% and 90%, respectively) show different habitat use when occurring within and outside protected areas, with the magnitude of this shift highly varying across species. A minority of species (16% of birds and 10% of mammals) do not change their niche volume nor shift their habitat between protected and unprotected areas. Variation in niche properties is largely unrelated to species traits. Overall, the varying ecological niche responses of birds and mammals to protected areas underscore that there is no universal niche-based response, and that niche responses to land protection are species-specific.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales , Ecosistema , Mamíferos/fisiología , Animales , Biodiversidad , Especificidad de la Especie
7.
Ecol Evol ; 12(6): e9041, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35784031

RESUMEN

Aposematic animals advertise their toxicity or unpalatability with bright warning coloration. However, acquiring and maintaining chemical defenses can be energetically costly, and consequent associations with other important traits could shape chemical defense evolution. Here, we have tested whether chemical defenses are involved in energetic trade-offs with other traits, or whether the levels of chemical defenses are condition dependent, by studying associations between biosynthesized cyanogenic toxicity and a suite of key life-history and fitness traits in a Heliconius butterfly under a controlled laboratory setting. Heliconius butterflies are well known for the diversity of their warning color patterns and widespread mimicry and can both sequester the cyanogenic glucosides of their Passiflora host plants and biosynthesize these toxins de novo. We find energetically costly life-history traits to be either unassociated or to show a general positive association with biosynthesized cyanogenic toxicity. More toxic individuals developed faster and had higher mass as adults and a tendency for increased lifespan and fecundity. These results thus indicate that toxicity level of adult butterflies may be dependent on individual condition, influenced by genetic background or earlier conditions, with maternal effects as one strong candidate mechanism. Additionally, toxicity was higher in older individuals, consistent with previous studies indicating accumulation of toxins with age. As toxicity level at death was independent of lifespan, cyanogenic glucoside compounds may have been recycled to release resources relevant for longevity in these long-living butterflies. Understanding the origins and maintenance of variation in defenses is necessary in building a more complete picture of factors shaping the evolution of aposematic and mimetic systems.

8.
Proc Biol Sci ; 289(1976): 20220322, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35673865

RESUMEN

Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that nearly all tested factors strongly affected departure probabilities, but that the same factors explained very little variation in realized dispersal distances. Surprisingly, we found no effect of dispersal distance on post-settlement survival. Rather, survival was influenced by weather conditions, quality of the natal habitat patch, and a strong interaction between genotype and occupancy status of the settled habitat patch, with more mobile genotypes having higher survival as colonists rather than as immigrants. Our work highlights the multi-causality of dispersal and that some dispersal costs can only be understood by considering extrinsic and intrinsic factors and their interaction across the entire dispersal process.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Ecosistema , Genotipo , Dinámica Poblacional , Tiempo (Meteorología)
9.
Gigascience ; 11(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022701

RESUMEN

BACKGROUND: The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. RESULTS: The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92-94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. CONCLUSIONS: The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.


Asunto(s)
Mariposas Diurnas , Fritillaria , Animales , Mariposas Diurnas/genética , Mapeo Cromosómico , Cromosomas/genética , Fritillaria/genética , Genoma , Masculino
10.
Ecol Evol ; 12(12): e9662, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619708

RESUMEN

In variable environments, phenotypic plasticity can increase fitness by providing tight environment-phenotype matching. However, adaptive plasticity is expected to evolve only when the future selective environment can be predicted based on the prevailing conditions. That is, the juvenile environment should be predictive of the adult environment (within-generation plasticity) or the parental environment should be predictive of the offspring environment (transgenerational plasticity). Moreover, the environmental predictability can also shape transient responses such as stress response in an adaptive direction. Here, we test links between environmental predictability and the evolution of adaptive plasticity by combining time series analyses and a common garden experiment using temperature as a stressor in a temperate butterfly (Melitaea cinxia). Time series analyses revealed that across season fluctuations in temperature over 48 years are overall predictable. However, within the growing season, temperature fluctuations showed high heterogeneity across years with low autocorrelations and the timing of temperature peaks were asynchronous. Most life-history traits showed strong within-generation plasticity for temperature and traits such as body size and growth rate broke the temperature-size rule. Evidence for transgenerational plasticity, however, was weak and detected for only two traits each in an adaptive and non-adaptive direction. We suggest that the low predictability of temperature fluctuations within the growing season likely disfavors the evolution of adaptive transgenerational plasticity but instead favors strong within-generation plasticity.

11.
Mol Ecol ; 31(22): 5666-5683, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34516691

RESUMEN

Predicting how climate change affects biotic interactions poses a challenge. Plant-insect herbivore interactions are particularly sensitive to climate change, as climate-induced changes in plant quality cascade into the performance of insect herbivores. Whereas the immediate survival of herbivore individuals depends on plastic responses to climate change-induced nutritional stress, long-term population persistence via evolutionary adaptation requires genetic variation for these responses. To assess the prospects for population persistence under climate change, it is therefore crucial to characterize response mechanisms to climate change-induced stressors, and quantify their variability in natural populations. Here, we test developmental and transcriptomic responses to water limitation-induced host plant quality change in a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We combine nuclear magnetic resonance spectroscopy on the plant metabolome, larval developmental assays and an RNA sequencing analysis of the larval transcriptome. We observed that responses to feeding on water-limited plants, in which amino acids and aromatic compounds are enriched, showed marked variation within the metapopulation, with individuals of some families performing better on control and others on water-limited plants. The transcriptomic responses were concordant with the developmental responses: families exhibiting opposite developmental responses also produced opposite transcriptomic responses (e.g. in growth-associated transcripts). The divergent responses in both larval development and transcriptome are associated with differences between families in amino acid catabolism and storage protein production. The results reveal intrapopulation variability in plasticity, suggesting that the Finnish M. cinxia metapopulation harbours potential for buffering against drought-induced changes in host plant quality.


Asunto(s)
Mariposas Diurnas , Humanos , Animales , Mariposas Diurnas/fisiología , Transcriptoma , Larva/fisiología , Herbivoria , Plantas , Agua
12.
Funct Ecol ; 36(11): 2873-2888, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36632135

RESUMEN

Many specialist herbivores have evolved strategies to cope with plant defences, with gut microbiota potentially participating to such adaptations.In this study, we assessed whether the history of plant use (population origin) and microbiota may interact with plant defence adaptation.We tested whether microbiota enhance the performance of Melitaea cinxia larvae on their host plant, Plantago lanceolata and increase their ability to cope the defensive compounds, iridoid glycosides (IGs).The gut microbiota were significantly affected by both larval population origin and host plant IG level. Contrary to our prediction, impoverishing the microbiota with antibiotic treatment did not reduce larval performance.As expected for this specialized insect herbivore, sequestration of one of IGs was higher in larvae fed with plants producing higher concentration of IGs. These larvae also showed metabolic signature of intoxication (i.e. decrease in Lysine levels). However, intoxication on highly defended plants was only observed when larvae with a history of poorly defended plants were simultaneously treated with antibiotics.Our results suggest that both adaptation and microbiota contribute to the metabolic response of herbivores to plant defence though complex interactions. Read the free Plain Language Summary for this article on the Journal blog.


De nombreux herbivores spécialistes ont évolué vers des stratégies qui leurs permettent de contourner les défenses de leur plantes hôtes. Le microbiote pourrait potentiellement participer à certaines de ces adaptations.Dans cette étude, nous avons essayé de déterminer si l'adaptation d'un herbivore est influencée par son microbiote et l'historique d'utilisation de sa plante hôte (origine de la population).Nous avons testé en quoi le microbiote contribue à la performance de chenilles Melitaea cinxia sur leur plante hôte Plantago lanceolata ainsi que leur capacité à faire face aux glucosides d'iridoïdes (GI), des molécules de défenses produites par P. lanceolata.Comme attendu, la concentration de GI stockée était plus importante chez les chenilles qui étaient nourries avec des plantes produisant de fortes concentrations de GI. Ces chenilles présentaient par ailleurs des signes d'intoxications (i.e. diminution de la concentration de Lysine). Cependant cela n'était visible que lorsque les chenilles étaient issues de populations qui se nourrissaient historiquement sur des plantes peu défendues et lorsqu'elles étaient simultanément traitées par des antibiotiques.Nos résultats suggèrent donc que des processus complexes d'adaptation couplés à l'activité du microbiote contribuent à la réponse des herbivores aux défenses de leurs plante hôtes.

13.
Ecol Evol ; 11(23): 16514-16523, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938453

RESUMEN

Warming temperatures are greatly impacting wild organisms across the globe. Some of the negative impacts of climate change can be mitigated behaviorally, for example, by changes in habitat and oviposition site choice. Temperatures are reportedly warming faster at night than during the day, yet studies assessing the impacts of increasing night temperature are rare. We used the Finnish Glanville fritillary butterfly (Melitaea cinxia) as study species and exposed adult butterflies of both sexes to warmer night conditions. Under a seminatural outdoor enclosure, we assessed whether females base their oviposition choices primarily on habitat site characteristics (open, suggestive of dry meadows, versus covered by a coarse canopy, suggestive of pastures) or on plant condition (dry vs. lush), and if their choice is altered by the thermal conditions experienced at night. As exposure to warmer environmental conditions is expected to increase resting metabolic rate and potentially reduce life expectancy, we further assessed the fitness implications of warm-night temperatures. We found that females prefer open sites for oviposition and that females do not switch their oviposition strategy based on the thermal conditions they experienced at night prior to the reproductive event. Exposure to warm nights did not influence female lifespan, but the egg hatching success of their offspring was reduced. In addition, we found that males exposed to warm nights sired larger clutches with higher hatching rate. As warm-night exposure reduced male lifespan, this may imply a switch in male resource allocation strategy toward increased offspring quality. The present work adds on to the complex implications of climate warming and highlights the importance of the often-neglected role of males in shaping offspring performance.

14.
Ecol Lett ; 24(8): 1619-1632, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34101328

RESUMEN

Species can adapt to climate change by adjusting in situ or by dispersing to new areas, and these strategies may complement or enhance each other. Here, we investigate temporal shifts in phenology and spatial shifts in northern range boundaries for 289 Lepidoptera species by using long-term data sampled over two decades. While 40% of the species neither advanced phenology nor moved northward, nearly half (45%) used one of the two strategies. The strongest positive population trends were observed for the minority of species (15%) that both advanced flight phenology and shifted their northern range boundaries northward. We show that, for boreal Lepidoptera, a combination of phenology and range shifts is the most viable strategy under a changing climate. Effectively, this may divide species into winners and losers based on their propensity to capitalize on this combination, with potentially large consequences on future community composition.


Asunto(s)
Lepidópteros , Animales , Cambio Climático , Estaciones del Año , Temperatura
15.
PeerJ ; 9: e11523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178447

RESUMEN

Chemical defences against predators underlie the evolution of aposematic coloration and mimicry, which are classic examples of adaptive evolution. Surprisingly little is known about the roles of ecological and evolutionary processes maintaining defence variation, and how they may feedback to shape the evolutionary dynamics of species. Cyanogenic Heliconius butterflies exhibit diverse warning color patterns and mimicry, thus providing a useful framework for investigating these questions. We studied intraspecific variation in de novo biosynthesized cyanogenic toxicity and its potential ecological and evolutionary sources in wild populations of Heliconius erato along environmental gradients, in common-garden broods and with feeding treatments. Our results demonstrate substantial intraspecific variation, including detectable variation among broods reared in a common garden. The latter estimate suggests considerable evolutionary potential in this trait, although predicting the response to selection is likely complicated due to the observed skewed distribution of toxicity values and the signatures of maternal contributions to the inheritance of toxicity. Larval diet contributed little to toxicity variation. Furthermore, toxicity profiles were similar along steep rainfall and altitudinal gradients, providing little evidence for these factors explaining variation in biosynthesized toxicity in natural populations. In contrast, there were striking differences in the chemical profiles of H. erato from geographically distant populations, implying potential local adaptation in the acquisition mechanisms and levels of defensive compounds. The results highlight the extensive variation and potential for adaptive evolution in defense traits for aposematic and mimetic species, which may contribute to the high diversity often found in these systems.

16.
Proc Biol Sci ; 287(1941): 20202577, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33323089

RESUMEN

Variation in environmental conditions during development can lead to changes in life-history traits with long-lasting effects. Here, we study how variation in temperature and host plant (i.e. the consequences of potential maternal oviposition choices) affects a suite of life-history traits in pre-diapause larvae of the Glanville fritillary butterfly. We focus on offspring survival, larval growth rates and relative fat reserves, and pay specific attention to intraspecific variation in the responses (G × E × E). Globally, thermal performance and survival curves varied between diets of two host plants, suggesting that host modifies the temperature impact, or vice versa. Additionally, we show that the relative fat content has a host-dependent, discontinuous response to developmental temperature. This implies that a potential switch in resource allocation, from more investment in growth at lower temperatures to storage at higher temperatures, is dependent on the larval diet. Interestingly, a large proportion of the variance in larval performance is explained by differences among families, or interactions with this variable. Finally, we demonstrate that these family-specific responses to the host plant remain largely consistent across thermal environments. Together, the results of our study underscore the importance of paying attention to intraspecific trait variation in the field of evolutionary ecology.


Asunto(s)
Mariposas Diurnas/fisiología , Fritillaria/fisiología , Temperatura , Animales , Evolución Biológica , Ecología , Femenino , Larva , Oviposición , Fenotipo , Plantas
17.
Anim Behav ; 167: 275-288, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32952201

RESUMEN

Cold developmental conditions can greatly affect adult life history of ectotherms in seasonal habitats. Such effects are mostly negative, but sometimes adaptive. Here, we tested how cold conditions experienced during pupal development affect adult wing melanization of an insect ectotherm, the Glanville fritillary butterfly, Melitaea cinxia. We also assessed how in turn previous cold exposure and increased melanization can shape adult behaviour and fitness, by monitoring individuals in a seminatural set-up. We found that, despite pupal cold exposure inducing more melanization, wing melanization was not linked to adult thermoregulation preceding flight, under the conditions tested. Conversely, wing-vibrating behaviour had a major role in producing heat preceding flight. Moreover, more melanized individuals were more mobile across the experimental set-up. This may be caused by a direct impact of melanization on flight ability or a more indirect impact of coloration on behaviours such as mate search strategies and/or eagerness to disperse to more suitable mating habitats. We also found that more melanized individuals of both sexes had reduced mating success and produced fewer offspring, which suggests a clear fitness cost of melanization. Whether the reduced mating success is dictated by impaired mate search behaviour, reduced physical condition leading to a lower dominance status or weakened visual signalling remains unknown. In conclusion, while there was no clear role of melanization in providing a thermal advantage under our seminatural conditions, we found a fitness cost of being more melanized, which potentially impacted adult space use behaviour.

18.
Ecol Evol ; 10(16): 8755-8769, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884655

RESUMEN

Plant tissues often lack essential nutritive elements and may contain a range of secondary toxic compounds. As nutritional imbalance in food intake may affect the performances of herbivores, the latter have evolved a variety of physiological mechanisms to cope with the challenges of digesting their plant-based diet. Some of these strategies involve living in association with symbiotic microbes that promote the digestion and detoxification of plant compounds or supply their host with essential nutrients missing from the plant diet. In Lepidoptera, a growing body of evidence has, however, recently challenged the idea that herbivores are nutritionally dependent on their gut microbial community. It is suggested that many of the herbivorous Lepidopteran species may not host a resident microbial community, but rather a transient one, acquired from their environment and diet. Studies directly testing these hypotheses are however scarce and come from an even more limited number of species.By coupling comparative metabarcoding, immune gene expression, and metabolomics analyses with experimental manipulation of the gut microbial community of prediapause larvae of the Glanville fritillary butterfly (Melitaea cinxia, L.), we tested whether the gut microbial community supports early larval growth and survival, or modulates metabolism or immunity during early stages of development.We successfully altered this microbiota through antibiotic treatments and consecutively restored it through fecal transplants from conspecifics. Our study suggests that although the microbiota is involved in the up-regulation of an antimicrobial peptide, it did not affect the life history traits or the metabolism of early instars larvae.This study confirms the poor impact of the microbiota on diverse life history traits of yet another Lepidoptera species. However, it also suggests that potential eco-evolutionary host-symbiont strategies that take place in the gut of herbivorous butterfly hosts might have been disregarded, particularly how the microbiota may affect the host immune system homeostasis.

19.
Ecology ; 101(12): e03186, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32892363

RESUMEN

The dynamics of ecological communities depend partly on species interactions within and among trophic levels. Experimental work has demonstrated the impact of species interactions on the species involved, but it remains unclear whether these effects can also be detected in long-term time series across heterogeneous landscapes. We analyzed a 19-yr time series of patch occupancy by the Glanville fritillary butterfly Melitaea cinxia, its specialist parasitoid wasp Cotesia melitaearum, and the specialist fungal pathogen Podosphaera plantaginis infecting Plantago lanceolata, a host plant of the Glanville fritillary. These species share a network of more than 4,000 habitat patches in the Åland islands, providing a metacommunity data set of unique spatial and temporal resolution. To assess the influence of interactions among the butterfly, parasitoid, and mildew on metacommunity dynamics, we modeled local colonization and extinction rates of each species while including or excluding the presence of potentially interacting species in the previous year as predictors. The metapopulation dynamics of all focal species varied both along a gradient in host plant abundance, and spatially as indicated by strong effects of local connectivity. Colonization and to a lesser extent extinction rates depended also on the presence of interacting species within patches. However, the directions of most effects differed from expectations based on previous experimental and modeling work, and the inferred influence of species interactions on observed metacommunity dynamics was limited. These results suggest that although local interactions among the butterfly, parasitoid, and mildew occur, their roles in metacommunity spatiotemporal dynamics are relatively weak. Instead, all species respond to variation in plant abundance, which may in turn fluctuate in response to variation in climate, land use, or other environmental factors.


Asunto(s)
Mariposas Diurnas , Animales , Ascomicetos , Ecosistema , Finlandia , Dinámica Poblacional
20.
Proc Natl Acad Sci U S A ; 117(31): 18557-18565, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690693

RESUMEN

Breeding timed to match optimal resource abundance is vital for the successful reproduction of species, and breeding is therefore sensitive to environmental cues. As the timing of breeding shifts with a changing climate, this may not only affect the onset of breeding but also its termination, and thus the length of the breeding period. We use an extensive dataset of over 820K nesting records of 73 bird species across the boreal region in Finland to probe for changes in the beginning, end, and duration of the breeding period over four decades (1975 to 2017). We uncover a general advance of breeding with a strong phylogenetic signal but no systematic variation over space. Additionally, 31% of species contracted their breeding period in at least one bioclimatic zone, as the end of the breeding period advanced more than the beginning. We did not detect a statistical difference in phenological responses of species with combinations of different migratory strategy or number of broods. Nonetheless, we find systematic differences in species responses, as the contraction in the breeding period was found almost exclusively in resident and short-distance migrating species, which generally breed early in the season. Overall, changes in the timing and duration of reproduction may potentially lead to more broods co-occurring in the early breeding season-a critical time for species' reproductive success. Our findings highlight the importance of quantifying phenological change across species and over the entire season to reveal shifts in the community-level distribution of bird reproduction.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Reproducción/fisiología , Animales , Aves/clasificación , Cambio Climático , Finlandia , Filogenia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...