Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Rev Genet ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39433596

RESUMEN

Biomolecular condensates are thought to create subcellular microenvironments that regulate specific biochemical activities. Extensive in vitro work has helped link condensate formation to a wide range of cellular processes, including gene expression, nuclear transport, signalling and stress responses. However, testing the relationship between condensate formation and function in cells is more challenging. In particular, the extent to which the cellular functions of condensates depend on the nature of the molecular interactions through which the condensates form is a major outstanding question. Here, we review results from recent genetic complementation experiments in cells, and highlight how genetic complementation provides important insights into cellular functions and functional specificity of biomolecular condensates. Combined with observations from human genetic disease, these experiments suggest that diverse condensate-promoting regions within cellular proteins confer different condensate compositions, biophysical properties and functions.

2.
Mol Cell ; 84(18): 3497-3512.e9, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39232584

RESUMEN

Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.


Asunto(s)
Condensados Biomoleculares , Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Unión Proteica , Orgánulos/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
3.
Sci Adv ; 10(11): eadk7160, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489358

RESUMEN

During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.


Asunto(s)
Miocitos del Músculo Liso , Factores de Transcripción , Linaje de la Célula/genética , Diferenciación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Miocitos del Músculo Liso/metabolismo , Activación Transcripcional
5.
J Mol Biol ; 435(5): 167971, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36690068

RESUMEN

In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ∼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.


Asunto(s)
Condensados Biomoleculares , Enfermedad , Transición de Fase , Humanos
6.
Cell ; 186(2): 327-345.e28, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36603581

RESUMEN

Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , ARN Polimerasa II , Transcripción Genética , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Polimerasa II/metabolismo , Activación Transcripcional , Animales , Ratones
7.
Mol Cell ; 82(21): 3965-3967, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332603

RESUMEN

In this issue of Molecular Cell, Song et al. demonstrate that mutations to the YEATS domain of ENL aberrantly activate gene expression by forming condensates on specific genomic loci. By using diverse experimental approaches, the authors dissect the molecular underpinnings of ENL mutant condensate formation.


Asunto(s)
Factores de Transcripción , Factores de Elongación Transcripcional , Factores de Elongación Transcripcional/genética , Factores de Transcripción/metabolismo , Dominios Proteicos
8.
Mol Cell ; 81(22): 4577-4578, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34798044

RESUMEN

Shi et al. (2021) demonstrate that tumor-suppressive and developmental functions of UTX require an intrinsically disordered region (IDR) capable of condensate formation. These results provide further evidence for the functional role of IDR-mediated spatial organization in regulating gene expression in development and disease.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Expresión Génica , Proteínas Intrínsecamente Desordenadas/genética
9.
Sci Transl Med ; 13(614): eabc0497, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613815

RESUMEN

Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle­related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT­expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas.


Asunto(s)
Ependimoma , Histonas , Animales , Niño , Ependimoma/genética , Epigénesis Genética , Epigenómica , Histonas/genética , Humanos , Redes y Vías Metabólicas , Ratones
10.
Dev Cell ; 55(1): 84-96, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049213

RESUMEN

Activating the right gene at the right time and place is essential for development. Emerging evidence suggests that this process is regulated by the mesoscale compartmentalization of the gene-control machinery, RNA polymerase II and its cofactors, within biomolecular condensates. Coupling gene activity to the reversible and dynamic process of condensate formation is proposed to enable the robust and precise changes in gene-regulatory programs during signaling and development. The macromolecular features that enable condensates and the regulatory pathways that control them are dysregulated in disease, highlighting their importance for normal physiology. In this review, we will discuss the role of condensates in gene activation; the multivalent features of protein, RNA, and DNA that enable reversible condensate formation; and how these processes are utilized in normal and disease biology. Understanding the regulation of condensates promises to provide novel insights into how organization of the gene-control machinery regulates development and disease.


Asunto(s)
Expresión Génica/fisiología , Orgánulos/metabolismo , ARN/metabolismo , Activación Transcripcional/fisiología , Animales , ADN/metabolismo , Humanos , Proteínas/metabolismo
11.
Trends Biochem Sci ; 45(11): 961-977, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32684431

RESUMEN

Nuclear processes such as DNA replication, transcription, and RNA processing each depend on the concerted action of many different protein and RNA molecules. How biomolecules with shared functions find their way to specific locations has been assumed to occur largely by diffusion-mediated collisions. Recent studies have shown that many nuclear processes occur within condensates that compartmentalize and concentrate the protein and RNA molecules required for each process, typically at specific genomic loci. These condensates have common features and emergent properties that provide the cell with regulatory capabilities beyond canonical molecular regulatory mechanisms. We describe here the shared features of nuclear condensates, the components that produce locus-specific condensates, elements of specificity, and the emerging understanding of mechanisms regulating these compartments.


Asunto(s)
Núcleo Celular/metabolismo , ADN/metabolismo , Proteínas/metabolismo , ARN/metabolismo , Núcleo Celular/química , ADN/química , Humanos , Proteínas/química , ARN/química
12.
Science ; 368(6497): 1386-1392, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32554597

RESUMEN

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Mol Cell ; 76(5): 753-766.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31563432

RESUMEN

The gene expression programs that define the identity of each cell are controlled by master transcription factors (TFs) that bind cell-type-specific enhancers, as well as signaling factors, which bring extracellular stimuli to these enhancers. Recent studies have revealed that master TFs form phase-separated condensates with the Mediator coactivator at super-enhancers. Here, we present evidence that signaling factors for the WNT, TGF-ß, and JAK/STAT pathways use their intrinsically disordered regions (IDRs) to enter and concentrate in Mediator condensates at super-enhancers. We show that the WNT coactivator ß-catenin interacts both with components of condensates and DNA-binding factors to selectively occupy super-enhancer-associated genes. We propose that the cell-type specificity of the response to signaling is mediated in part by the IDRs of the signaling factors, which cause these factors to partition into condensates established by the master TFs and Mediator at genes with prominent roles in cell identity.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Complejo Mediador/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejo Mediador/fisiología , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Proteína smad3/metabolismo , Proteínas de la Superfamilia TGF-beta/metabolismo , Transcripción Genética , Vía de Señalización Wnt , beta Catenina/metabolismo
14.
Nature ; 572(7770): 543-548, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391587

RESUMEN

The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex1-4. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus5,6. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain7-12. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers7,8, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites9-12. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference.


Asunto(s)
Complejo Mediador/química , Complejo Mediador/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Empalme del ARN , Transcripción Genética , Animales , Línea Celular , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Humanos , Complejo Mediador/genética , Ratones , Fosforilación , Dominios Proteicos , ARN Polimerasa II/genética , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
15.
Mol Cell ; 75(3): 549-561.e7, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398323

RESUMEN

Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.


Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Transcripción Genética , Animales , Secuencia de Bases/genética , Sitios de Unión/genética , ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genómica , Ratones , Células Madre Embrionarias de Ratones
16.
Cell ; 175(7): 1842-1855.e16, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30449618

RESUMEN

Gene expression is controlled by transcription factors (TFs) that consist of DNA-binding domains (DBDs) and activation domains (ADs). The DBDs have been well characterized, but little is known about the mechanisms by which ADs effect gene activation. Here, we report that diverse ADs form phase-separated condensates with the Mediator coactivator. For the OCT4 and GCN4 TFs, we show that the ability to form phase-separated droplets with Mediator in vitro and the ability to activate genes in vivo are dependent on the same amino acid residues. For the estrogen receptor (ER), a ligand-dependent activator, we show that estrogen enhances phase separation with Mediator, again linking phase separation with gene activation. These results suggest that diverse TFs can interact with Mediator through the phase-separating capacity of their ADs and that formation of condensates with Mediator is involved in gene activation.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptores de Estrógenos/metabolismo , Activación Transcripcional/fisiología , Animales , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Dominios Proteicos , Receptores de Estrógenos/genética
17.
Science ; 361(6400)2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29930091

RESUMEN

Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Secuencia Conservada , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación de la Expresión Génica/efectos de los fármacos , Glicoles/farmacología , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Subunidad 1 del Complejo Mediador/química , Subunidad 1 del Complejo Mediador/genética , Ratones , Imagen Molecular , Células 3T3 NIH , Proteínas Nucleares/química , Proteínas Nucleares/genética , Serina/química , Serina/genética , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/química , Factores de Transcripción/genética
19.
J Allergy Clin Immunol ; 140(2): 474-485, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28108335

RESUMEN

BACKGROUND: Mast cells are key effector cells in allergic reactions. When activated to degranulate, they release a plethora of bioactive compounds from their secretory granules, including mast cell-restricted proteases such as tryptase. In a previous study, we showed that tryptase, in addition to its intragranular location, can be found within the nuclei of mast cells where it truncates core histones at their N-terminal ends. OBJECTIVE: Considering that the N-terminal portions of the core histones constitute sites for posttranslational modifications of major epigenetic impact, we evaluated whether histone truncation by tryptase could have an impact on epigenetic events in mast cells. METHODS: Mast cells were cultured from wild-type and tryptase null mice, followed by an assessment of their profile of epigenetic histone modifications and their phenotypic characteristics. RESULTS: We show that tryptase truncates nucleosomal histone 3 and histone 2B (H2B) and that its absence results in accumulation of the epigenetic mark, lysine 5-acetylated H2B. Intriguingly, the accumulation of lysine 5-acetylated H2B was cell age-dependent and was associated with a profound upregulation of markers of non-mast cell lineages, loss of proliferative control, chromatin remodeling as well as extensive morphological alterations. CONCLUSIONS: These findings introduce tryptase-catalyzed histone clipping as a novel epigenetic regulatory mechanism, which in the mast cell context may be crucial for maintaining cellular identity.


Asunto(s)
Histonas/metabolismo , Mastocitos/metabolismo , Triptasas/metabolismo , Acetilación , Ácidos Anacárdicos/farmacología , Animales , Catepsina G/genética , Células Cultivadas , Epigénesis Genética , Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Lisina/metabolismo , Mastocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoglicanos/genética , Triptasas/genética , Proteínas de Transporte Vesicular/genética
20.
Nat Rev Mol Cell Biol ; 18(2): 90-101, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27924077

RESUMEN

Eight types of short-chain Lys acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and ß-hydroxybutyrylation. Emerging evidence suggests that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this Review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, the acylation 'reader' proteins that mediate the effects of different acylations and their physiological functions, which include signal-dependent gene activation, spermatogenesis, tissue injury and metabolic stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by the metabolism of the different acyl-CoA forms, which in turn modulates the regulation of gene expression.


Asunto(s)
Regulación de la Expresión Génica , Histonas/química , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Acilcoenzima A/metabolismo , Acilación , Animales , Ácidos Grasos Volátiles/metabolismo , Histonas/genética , Humanos , Lisina/metabolismo , Masculino , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Espermatogénesis , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...