Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38202547

RESUMEN

Water pollution has emerged as a major challenge for the scientific community because of the rapid expansion of the population and the industrial sector in the world. The current study focuses on introducing a new track for designing new optical nanocomposites for purifying water in addition to providing a new additive for building new nanohybrids. These targets were achieved through building a ternary system of Co/Ti/Zn nanocomposites and nanolayered structures. The Co/Ti/Zn nanolayered structures were prepared and intercalated by different kinds of organic acids: monocarboxylic and dicarboxylic acids. Long chains of organic acids were used to construct series of organic-inorganic nanohybrids. X-ray diffraction, thermal analyses, Fourier Transform Infrared spectroscopy, and scanning electron microscopy confirmed the formation of nanolayered structures and nanohybrids. The optical properties of the nanolayered structure showed that the Co/Ti/Zn LDH became photo-active compared with the usual Al/Zn LDH because of the reduction in the band gap energy from 5.3 eV to 3.3 eV. After thermal treatment, a highly photo-active nanocomposite was produced through observing more reduction for the band gap energy to become 2.8 eV. In addition, the dye of Acid Green 1 completely decomposed and converted to water and carbon dioxide during 17 min of UV radiation by the dual Co/Ti-doped zinc oxide nanocomposite. In addition, the kinetic study confirmed that the high optical activity of the dual Co/Ti-doped zinc oxide nanocomposite accelerated the degradation of the green dyes. Finally, from these results it could be concluded that designing effective nanocomposite for purification of water was accomplished through converting 2D nanolayered structures to a 3D porous structure of Ni/Ti/Zn nanocomposites. In addition, a new additive was achieved for heterostructured hybrids through building new Co/Ti/Zn/organic nanohybrids.

2.
Molecules ; 27(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014296

RESUMEN

Industrial water has a dual problem because of its strong acidic characteristics and the presence of heavy metals. Removing heavy metals from water in these severe conditions has special requirements. For this problem, an economic method was used for removing iron (Fe), copper (Cu), chromium (Cr), nickel (Ni) and manganese (Mn) with extremely acidic characteristics from water. This method depends on the preparation of nanohybrids through host-guest interactions based on nanolayered structures, organic species (stearic acid), polyvinyl alcohol (PVA) and carbon nanotubes (CNTs). The formation of nanohybrids was confirmed using different techniques through the expansion of the interlayered spacing of the nanolayered structure from 0.76 nm to 1.60 nm, 1.40 nm and 1.06 nm. This nano-spacing is suitable for trapping and confining the different kinds of heavy metal. The experimental results indicated that the prepared nanohybrid was more effective than GreensandPlus, which is used on the market for purifying water. The high activity of the nanohybrid is obvious in the removal of both copper and nickel because the GreensandPlus was completely inactive for these heavy metals under severe conditions. Finally, these experimental results introduce new promising materials for purifying industrial water that can work under severe conditions.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014614

RESUMEN

Due to an escalating increase in multiple antibiotic resistance among bacteria, novel nanomaterials with antimicrobial properties are being developed to prevent infectious diseases caused by bacteria that are common in wastewater and the environment. A series of nanolayered structures and nanohybrids were prepared and modified by several methods including an ultrasonic technique, intercalation reactions of fatty acids, and carbon nanotubes, in addition to creating new phases based on zinc and aluminum. The nanomaterials prepared were used against a group of microorganisms, including E. coli, S. aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. Experimental results revealed that a nanohybrid based on carbon nanotubes and fatty acids showed significant antimicrobial activity against E. coli, and can be implemented in wastewater treatment. Similar behavior was observed for a nanolayered structure which was prepared using ultrasonic waves. For the other microorganisms, a nanolayered structure combined with carbon nanotubes showed a significant and clear inhibitory effect on S. aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. It is concluded that the nanolayered structures and nanohybrids, which can be modified at low cost with high productivity, using simple operations and straightforward to use equipment, can be considered good candidates for preventing infectious disease and inhibiting the spread of bacteria, especially those that are commonly found in wastewater and the environment.

4.
Materials (Basel) ; 15(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35806564

RESUMEN

This paper focuses on the fabrication of defective-induced nanotubes via the catalytic chemical vapor deposition method and the investigation of their properties toward gas sensing. We have developed defective multi-walled carbon nanotubes with porous and crystalline structures. The catalyst layer used in CNTs' growth here was based on 18 and 24 nm of Ni, and 5 nm of Cr deposited by the dc-sputtering technique. The CNTs' defects were characterized by observing the low graphite peak (G-band) and higher defect peaks (D-band) in the Raman spectrum. The defectives sites are the main source of the sensitivity of materials toward different gases. Thus, the current product was used for sensing devices. The device was subjected to various gases such as NO, NO2, CO, acetone, and ethanol at a low operating temperature of 30 °C and a concentration of 50 ppm. The sensor was observed to be less sensitive to most gas while showing the highest response towards ethanol gas. The sensor showed the highest response of 8.8% toward ethanol at 30 °C of 50 ppm, and a low response of 2.8% at 5 ppm, which was investigated here. The signal repeatability of the present sensor showed its capability to detect ethanol at much lower concentrations and at very low operating temperatures, resulting in reliability and saving power consumption. The gas sensing mechanism of direct interaction between the gas molecules and nanotube surface was considered the main. We have also proposed a sensing mechanism based on Coulomb dipole interaction for the physical adsorption of gas molecules on the surface.

5.
RSC Adv ; 12(28): 18282-18295, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35800303

RESUMEN

The present study describes a new strategy for modifying the structure of zinc oxide for removing colored pollutants from water after a few minutes of light irradiation. In this context, the magnetic nanocomposite was combined with the nanolayers of Al/Zn to build inorganic-magnetic nanohybrids. The long chains of hydrocarbons of stearic acid have been used as pillars to widen interlayered spacing among the nanolayers to build organic-magnetic-inorganic nanohybrids. These nanohybrids were used as sources for designing zinc oxide nanohybrids to purify water from the green dyes using UV-light. The optical measurements showed that the nanohybrid structure of zinc oxide led to a clear reduction in the band gap energy from 3.30 eV to 2.75 eV to be more effective. In addition, a complete removal of naphthol green B was achieved after 15 min in the presence of zinc oxide nanohybrid using UV-light. The kinetic study showed that the reaction rate for the photocatalytic degradation of the pollutants was faster than that of the conventional photocatalysts. Finally, this strategy for designing photoactive nanohybrids led to positive results for overcoming environment- and water-related problems using the fast technique for purifying water.

6.
Molecules ; 27(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35744799

RESUMEN

Energy and water related problems have attracted strong attention from scientists across the world because of deficient energy and water pollution. Following this line, new strategy depended on preparing nanolayers of Al/Zn and magnetic nanoparticles of cobalt iron oxides nanocomposite in addition to long chains of hydrocarbons of stearic acid to be used as roofs, fillers and pillars; respectively, to design optical-active nanohybrids in sunlight for removing the colored pollutants from water in few minutes. By using long chains of hydrocarbons of stearic acid, X-ray diffraction (XRD) results and TEM images showed expansion of the interlayered spacing from 0.76 nm to 2.02 nm and insertion of magnetic nanoparticles among the nanolayers of Al/Zn. The optical properties and activities showed that the nanohybrid structure based on zinc oxide led to clear reduction of the band gap energy from 3.3 eV to 2.75 eV to be effective in sunlight. Photocatalytic degradation of the dye of acid green 1 confirmed the high activity of the prepared zinc oxide nanohybrids because of a complete removal of the dye after ten minutes in sunlight. Finally, this strategy was effective for producing photo-active nanohybrids for using renewable and non-polluting energy for purifying water.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Catálisis , Magnetismo , Nanocompuestos/química , Luz Solar , Agua
7.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35745344

RESUMEN

Water pollution and deficient energy are the main challenges for the scientific society across the world. In this trend, new approaches include designing zinc oxide nanohybrids to be very active in sunlight. In this line, organic and magnetic species intercalate among the nanolayers of Al/Zn to build inorganic-magnetic-organic nanohybrid structures. A series of nanolayered and nanohybrid structures have been prepared through intercalating very fine particles of cobalt iron oxide nanocomposites and long chains of organic fatty acids such as n-capric acid and stearic acid inside the nanolayered structures of Al/Zn. By thermal treatment, zinc oxide nanohybrids have been prepared and used for purifying water from colored pollutants using solar energy. The optical measurements have shown that the nanohybrid structure of zinc oxide leads to a clear reduction of band gap energy from 3.30 eV to 2.60 eV to be effective in sunlight. In this line, a complete removal of the colored pollutants (naphthol green B) was achieved after ten minutes in the presence of zinc oxide nanohybrid and sunlight. Finally, this new approach for designing photoactive nanohybrids leads to positive results for facing the energy- and water-related problems through using renewable and non-polluting energy for purifying water.

8.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35564113

RESUMEN

It is well known that layered double hydroxides (LDHs) are two-dimensional (2D) layered compounds. However, we modified these 2D layered compounds to become one-dimensional (1D) nanostructures destined for high-performance supercapacitors applications. In this direction, silicon was inserted inside the nanolayers of Co-LDHs producing nanofibers of Si/Co LDHs through the intercalation of cyanate anions as pillars for building nanolayered structures. Additionally, nanoparticles were observed by controlling the preparation conditions and the silicon percentage. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermal analyses have been used to characterize the nanolayered structures of Si/Co LDHs. The electrochemical characterization was performed by cyclic voltammetry and galvanic charge-discharge technique in 2M KOH electrolyte solution using three-electrode cell system. The calculated specific capacitance results indicated that the change of morphology from nanoparticles or plates to nanofibers had a positive effect for improving the performance of specific capacitance of Si/Co LDHs. The specific capacitance enhanced to be 621.5 F g-1 in the case of the nanofiber of Si/Co LDHs. Similarly, the excellent cyclic stability (84.5%) was observed for the nanofiber. These results were explained through the attribute of the nanofibrous morphology and synergistic effects between the electric double layer capacitive character of the silicon and the pseudo capacitance nature of the cobalt. The high capacitance of ternary Si/Co/cyanate LDHs nanocomposites was suggested to be used as active electrode materials for high-performance supercapacitors applications.

9.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159785

RESUMEN

Controlling of morphology from nanoparticles to magnetic nanotubes and hollow nanorods are interesting for developing the photo-active materials and their applications in the field of photocatalysis and decontamination of aquatic effluents. In the current study, titanium dioxide nanoparticles and nanocomposites were prepared by different techniques to produce various morphologies. The nanoparticles of pure titanium dioxide were prepared by sol-gel technique. Magnetic nanotubes and hollow nanorods were prepared by combining titanium with di- and tri-valent iron through two stages: urea hydrolysis and solvent thermal technique. According to the Kirkendall effect, magnetic nanotubes were fabricated by unequal diffusion of Fe2+, Fe3+ and Ti4+ inside the nanocomposite to produce maghemite-titanian phase. In the same trend, hollow nanorods were synthesized by limited diffusion of both trivalent iron and tetravalent titanium producing amorphous structure of titanium iron oxides. The magnetic and optical properties showed that these nanotubes and hollow nanorods are magnetically active and optically more effective compared with titanium dioxide nanoparticles. Therefore, the Naphthol green B dye completely disappeared after 45 min of UV light irradiation in presence of the hollow nanorods. The kinetic study confirmed the high performance of the hollow nanorods for the photocatalytic degradation of Naphthol green B compared with titanium dioxide nanoparticles.

10.
Materials (Basel) ; 14(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34500895

RESUMEN

NSCTO (Na0.5Sm0.5Cu3Ti4O12) ceramics have been prepared by reactive sintering solid-state reaction where the powder was prepared from the elemental oxides by mechanochemical milling followed by conventional sintering in the temperature range 1000-1100 °C. The influence of sintering temperature on the structural and dielectric properties was thoroughly studied. X-ray diffraction analysis (XRD) revealed the formation of the cubic NSCTO phase. By using the Williamson-Hall approach, the crystallite size and lattice strain were calculated. Scanning electron microscope (SEM) observations revealed that the grain size of NSCTO ceramics is slightly dependent on the sintering temperature where the average grain size increased from 1.91 ± 0.36 µm to 2.58 ± 0.89 µm with increasing sintering temperature from 1000 °C to 1100 °C. The ceramic sample sintered at 1025 °C showed the best compromise between colossal relative permittivity (ε' = 1.34 × 103) and low dielectric loss (tanδ = 0.043) values at 1.1 kHz and 300 K. The calculated activation energy for relaxation and conduction of NSCTO highlighted the important role of single and double ionized oxygen vacancies in these processes.

11.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007832

RESUMEN

Development of optical materials has attracted strong attention from scientists across the world to obtain low band gap energy and become active in field of solar energy. This challenge, which cannot be accomplished by the usual techniques, has overcome through the current study using non-conventional techniques. This study has used explosive reactions to convert non-optical alumina to series of new optical nanocomposites with very low band gap energy for the first time. In this trend, alumina nanoparticles were prepared and modified by explosive reactions using ammonium nitrate as a solid fuel. By using methanol or ethanol as a source of carbon species, three nanocomposites were produced indicating a gradual reduction of the band gap energy of alumina from 4.34 eV to 1.60 eV. These nanocomposites were obtained by modifying alumina via two different carbon species; core-shell structure and carbon nanotubes. This modification led to sharp reduction for the band gap energy to become very sensitive in sunlight. Therefore, these nanocomposites caused fast decolorization and mineralization of green dyes after illuminating in sunlight for ten minutes. Finally, it can be concluded that reduction of the band gap energy introduces new optical materials for developing optical nano-devices and solar cells.


Asunto(s)
Nanocompuestos/química , Óptica y Fotónica , Energía Solar , Luz Solar , Purificación del Agua/métodos , Óxido de Aluminio/química , Compuestos Férricos , Nanocompuestos/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Naftalenosulfonatos , Espectrometría por Rayos X , Espectrometría Raman , Termogravimetría , Contaminantes Químicos del Agua/aislamiento & purificación , Difracción de Rayos X
12.
Materials (Basel) ; 13(11)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492940

RESUMEN

In the present study, well-designed nanohybrids are used to act as effective dual-function adsorbents for removing both anions and heavy metals from natural water, at the same time. In this trend, Zn-Al LDHs and graphene oxide are applied to build up building blocks to produce a series of nanohybrids. These nanohybrids were characterized by X-ray diffraction, thermal analyses, Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning and transmission electron microscopy. These techniques confirmed that the prepared nanohybrids contained nanolayered structures with three-dimensional porous systems. These porous systems were identified by the nitrogen adsorption-desorption isotherms and water purification experiments. The obtained results indicated that these nanohybrids included suitable structures to act as dual function materials. The first function was achieved by removing more than 80% of both cadmium and lead from the natural water. The second function was accomplished by eliminating of 100% of hydrogen phosphate and bromide anions alongside with 80%-91% of sulfate, chloride, and fluoride anions. To conclude, these well-designed nanohybrids convert two-dimensional nanolayered structures to three-dimensional porous networks to work as dual-function materials for removing of heavy metals and different kinds of anions naturally found in the fresh tap water sample with no parameters optimization.

13.
RSC Adv ; 11(1): 380-389, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35423048

RESUMEN

This work aims at the synthesis of a polymer of poly-trimesoyl chloride and polyethyleneimine grafted on carbon fibers (PCF) derived from palm. The obtained PCF was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) for its structural properties. The obtained PCF was then evaluated for the removal of mercury (Hg(ii)) from aqueous solutions using batch adsorption studies at four different temperatures (298, 308, 318, and 328 K). The experimental parameters such as initial concentration, pH, dosage, and contact time were optimized on the mercury adsorption. The percentage removal was 100% with an adsorbent dosage of 100 mg L-1 at a pH between 5 and 7 and temperature of 298 K and thus kinetic, isotherm, and thermodynamic studies were performed under these conditions. By the Langmuir adsorption isotherm, the maximum adsorption capacity of Hg(ii) by PCF was 19.2 mg g-1. In addition, results fit the pseudo-second-order model, with R 2 > 0.99, to describe the adsorption kinetic mechanism. The adsorption process is spontaneous with an endothermic nature under the studied conditions.

14.
Materials (Basel) ; 12(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817624

RESUMEN

In order to improve the sensitivity and to reduce the working temperature of the CH4 gas sensor, a novel 1D nanostructure of CuO-doped In2O3 was synthesized by the co-evaporation of Cu and In granules. The samples were prepared with changing the weight ratio between Cu and In. Morphology, structure, and gas sensing properties of the prepared films were characterized. The planned operating temperatures for the fabricated sensors are 50-200 °C, where the ability to detect CH4 at low temperatures is rarely reported. For low Cu content, the fabricated sensors based on CuO-doped In2O3 showed very good sensing performance at low operating temperatures. The detection of CH4 at these low temperatures exhibits the potential of the present sensors compared to the reported in the literature. The fabricated sensors showed also good reversibility toward the CH4 gas. However, the sensor fabricated of CuO-mixed In2O3 with a ratio of 1:1 did not show any response toward CH4. In other words, the mixed-phase of p- and n-type of CuO and In2O3 materials with a ratio of 1:1 is not recommended for fabricating sensors for reducing gas, such as CH4. The gas sensing mechanism was described in terms of the incorporation of Cu in the In2O3 matrix and the formation of CuO and In2O3 phases.

15.
RSC Adv ; 9(52): 30509-30518, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35530223

RESUMEN

In this paper, we report a low temperature technique and new strategy for the dual growth of carbon nanotubes (CNTs) and nanorods (CNRs) with alumina nanoparticles to avoid the high temperature required for CNT and CNR production and their assembling behaviour. In this trend, X-ray diffraction and thermal analysis indicated that the porous system of aluminium species was prepared and saturated with the crystalline structure of ammonium nitrate to act as a solid explosive composite and caused alcohol decomposition inside a pressurized vessel at 250 °C. TEM images and the Raman results confirmed that the CNTs had grown at 250 °C through the decomposition of methanol inside the boehmite structure. Also, the TEM images revealed that the growth of CNTs depended on the ratio between the methanol and the solid explosive. By calcination at 600 °C, the Raman results indicated that the CNTs became more ordered and had fewer defects. In the case of changing methanol to ethanol, the results indicated that methanol was more favorable than ethanol for growing CNTs by this technique. Also, it indicated that ethanol was a good source for producing carbon nanorods. Finally, we concluded that this was probably the first time that carbon nanotubes or nanorods had been prepared at 250 °C and their aggregations prevented through their dual growth with alumina nanoparticles. This dual growth approach is a very promising strategy for building homogeneous nanocomposites based on carbon nanotubes and nanorods.

16.
ChemistryOpen ; 7(10): 833-841, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30338207

RESUMEN

The present study has two aims, first to accelerate the degradation of pollutants by coating carbon nanotubes (CNTs) with nanoplatelets or nanocomposites of aluminum zinc oxides and second to fabricate an advanced photocatalyst. Accordingly, Zn-Al layered double hydroxides (LDHs) were grown in the presence of functionalized CNTs during urea hydrolysis. The presence of CNTs led to the formation of LDH nanoplatelets, and TEM images showed that the CNTs were coated with nanoplatelets. The nanoplatelets were thermally treated to form nanocomposite-coated CNTs. Raman spectra demonstrated the successful coating of CNTs with LDHs and nanocomposite. The coated CNTs were very effective in the photocatalytic degradation of industrial pollutants. A kinetics study demonstrated that the rate of photocatalytic degradation of green dye in the presence of CNTs coated with aluminum zinc oxide nanocomposite was five times faster than with the aluminum zinc oxide nanocomposite.

17.
Biomark Med ; 12(3): 245-256, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29441798

RESUMEN

AIM: We aimed to examine the statistical association between serum expression of miRNA 661 (miR-661) and ATG-4B mRNA and hepatocellular carcinoma (HCC) based on in silico data analysis followed by clinical validation. PATIENTS & METHODS: Quantitative reverse-transcriptase real-time PCR was used to examine the expression of miR-661 and ATG-4B mRNA in the sera of HCC patients versus control. RESULTS: The expression of miR-661 and ATG-4B mRNA was positive in 97.14 and 77.14%, respectively, in HCC patients. The survival analysis showed that ATG-4B mRNA was an independent prognostic factor. CONCLUSION: Our data are the first report of its kind regarding the considerable clinical significance of miR-661 and ATG-4B mRNA in HCC patients.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Cisteína Endopeptidasas/genética , Neoplasias Hepáticas/diagnóstico , MicroARNs/sangre , ARN Mensajero/sangre , Área Bajo la Curva , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Curva ROC , Regulación hacia Arriba
18.
J Colloid Interface Sci ; 297(1): 182-9, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16359697

RESUMEN

The layered double hydroxides (LDHs) are nano-ordered layered compounds and well known for their ability to intercalate anionic compounds. Most LDH is prepared conventionally only with divalent and trivalent cations. In this study, Co-Zr-Si LDH, consisting of divalent, tetravalent, and tetravalent cations, was prepared and reacted with monocarboxylic acids at room temperature. The Co-Zr-Si LDH and intercalated compounds have been characterized by energy-dispersive X-ray spectrometry, X-ray powder diffraction, IR spectra, thermal analysis, and scanning electron microscopy (SEM). The insertion of cyanate and carbonate anions into LDH was confirmed by IR spectra. XRD patterns of the prepared Co-Zr-Si LDH showed that the interlayer spacing of the LDH is 0.78 nm. The spacing is similar to that of usual LDH in which chloride, carbonate, or bromide anion is the guest. SEM images showed that Co-Zr-Si LDH can exist as plate-like or fibrous structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...