Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Urol Oncol ; 7(3): 527-536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433714

RESUMEN

BACKGROUND: Genomic studies have identified new subsets of aggressive prostate cancer (PCa) with poor prognosis (eg, neuroendocrine prostate cancer [NEPC], PCa with DNA damage response [DDR] alterations, or PCa resistant to androgen receptor pathway inhibitors [ARPIs]). Development of novel therapies relies on the availability of relevant preclinical models. OBJECTIVE: To develop new preclinical models (patient-derived xenograft [PDX], PDX-derived organoid [PDXO], and patient-derived organoid [PDO]) representative of the most aggressive variants of PCa and to develop a new drug evaluation strategy. DESIGN, SETTING, AND PARTICIPANTS: NEPC (n = 5), DDR (n = 7), and microsatellite instability (MSI)-high (n = 1) PDXs were established from 51 patients with metastatic PCa; PDXOs (n = 16) and PDOs (n = 6) were developed to perform drug screening. Histopathology and treatment response were characterized. Molecular profiling was performed by whole-exome sequencing (WES; n = 13), RNA sequencing (RNA-seq; n = 13), and single-cell RNA-seq (n = 14). WES and RNA-seq data from patient tumors were compared with the models. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Relationships with outcome were analyzed using the multivariable chi-square test and the tumor growth inhibition test. RESULTS AND LIMITATIONS: Our PDXs captured both common and rare molecular phenotypes and their molecular drivers, including alterations of BRCA2, CDK12, MSI-high status, and NEPC. RNA-seq profiling demonstrated broad representation of PCa subtypes. Single-cell RNA-seq indicates that PDXs reproduce cellular and molecular intratumor heterogeneity. WES of matched patient tumors showed preservation of most genetic driver alterations. PDXOs and PDOs preserve drug sensitivity of the matched tissue and can be used to determine drug sensitivity. CONCLUSIONS: Our models reproduce the phenotypic and genomic features of both common and aggressive PCa variants and capture their molecular heterogeneity. Successfully developed aggressive-variant PCa preclinical models provide an important tool for predicting tumor response to anticancer therapy and studying resistance mechanisms. PATIENT SUMMARY: In this report, we looked at the outcomes of preclinical models from patients with metastatic prostate cancer enrolled in the MATCH-R trial (NCT02517892).


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Modelos Animales de Enfermedad
2.
Clin Cancer Res ; 29(21): 4504-4517, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364000

RESUMEN

PURPOSE: The androgen receptor axis inhibitors (ARPI; e.g., enzalutamide, abiraterone acetate) are administered in daily practice for men with metastatic castration-resistant prostate cancer (mCRPC). However, not all patients respond, and mechanisms of both primary and acquired resistance remain largely unknown. EXPERIMENTAL DESIGN: In the prospective trial MATCH-R (NCT02517892), 59 patients with mCRPC underwent whole-exome sequencing (WES) and/or RNA sequencing (RNA-seq) of samples collected before starting ARPI. Also, 18 patients with mCRPC underwent biopsy at time of resistance. The objectives were to identify genomic alterations associated with resistance to ARPIs as well as to describe clonal evolution. Associations of genomic and transcriptomic alterations with primary resistance were determined using Wilcoxon and Fisher exact tests. RESULTS: WES analysis indicated that no single-gene genomic alterations were strongly associated with primary resistance. RNA-seq analysis showed that androgen receptor (AR) gene alterations and expression levels were similar between responders and nonresponders. RNA-based pathway analysis found that patients with primary resistance had a higher Hedgehog pathway score, a lower AR pathway score and a lower NOTCH pathway score than patients with a response. Subclonal evolution and acquisition of new alterations in AR-related genes or neuroendocrine differentiation are associated with acquired resistance. ARPIs do not induce significant changes in the tumor transcriptome of most patients; however, programs associated with cell proliferation are enriched in resistant samples. CONCLUSIONS: Low AR activity, activation of stemness programs, and Hedgehog pathway were associated with primary ARPIs' resistance, whereas most acquired resistance was associated with subclonal evolution, AR-related events, and neuroendocrine differentiation. See related commentary by Slovin, p. 4323.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Proteínas Hedgehog , Estudios Prospectivos , Biomarcadores de Tumor , Resistencia a Antineoplásicos/genética , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Genómica , Nitrilos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...