Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201586

RESUMEN

The molecular mechanism underlying embryonic implantation is vital to understand the correct communications between endometrium and developing conceptus during early stages of pregnancy. This study's objective was to determine molecular changes in the uterine endometrial proteome during the preimplantation and peri-implantation between 9 days (9D), 12 days (12D), and 16 days (16D) of pregnant Polish Large White (PLW) gilts. 2DE-MALDI-TOF/TOF and ClueGOTM approaches were employed to analyse the biological networks and molecular changes in porcine endometrial proteome during maternal recognition of pregnancy. A total of sixteen differentially expressed proteins (DEPs) were identified using 2-DE gels and MALDI-TOF/TOF mass spectrometry. Comparison between 9D and 12D of pregnancy identified APOA1, CAPZB, LDHB, CCT5, ANXA4, CFB, TTR upregulated DEPs, and ANXA5, SMS downregulated DEPs. Comparison between 9D and 16D of pregnancy identified HP, APOA1, ACTB, CCT5, ANXA4, CFB upregulated DEPs and ANXA5, SMS, LDHB, ACTR3, HP, ENO3, OAT downregulated DEPs. However, a comparison between 12D and 16D of pregnancy identified HP, ACTB upregulated DEPs, and CRYM, ANXA4, ANXA5, CAPZB, LDHB, ACTR3, CCT5, ENO3, OAT, TTR down-regulated DEPs. Outcomes of this study revealed key proteins and their interactions with metabolic pathways involved in the recognition and establishment of early pregnancy in PLW gilts.


Asunto(s)
Implantación del Embrión/fisiología , Endometrio/metabolismo , Preñez/metabolismo , Proteínas/metabolismo , Animales , Femenino , Embarazo , Proteínas/análisis , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Porcinos
2.
Life (Basel) ; 10(5)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429378

RESUMEN

During the early stages of pregnancy, the uterine endometrium undergoes dramatic morphologic and functional changes accompanied with dynamic variation in gene expression. Pregnancy-stage specific differentially expressed gene (DEG)-transcript-probes were investigated and identified by comparing endometrium transcriptome at 9th day (9D), 12th day (12D) and 16th day (16D) of early pregnancy in Polish large-white (PLW) gilts. Endometrium comparisons between 9D-vs-12D, 9D-vs-16D and 12D-vs-16D of early pregnancy identified 6049, 374 and 6034 highly significant DEG-transcript-probes (p < 0.001; >2 FC). GO term enrichment analysis identified commonly shared upregulated endometrial DEG-transcript-probes (p < 0.001; >2 FC), that were regulating the gene functions of anatomic structure development and transport (TG), DNA-binding and methyltransferase activity (ZBTB2), ion-binding and kinase activity (CKM), cell proliferation and apoptosis activity (IL1B). Downregulated DEG-transcript-probes (p < 0.001; >2 FC) were involved in regulating the gene functions of phosphatase activity (PTPN11), TC616413 gene-transcript and Sus-scrofa LOC100525539. Moreover, blastn comparison of microarray-probes sequences against sus-scrofa11 assembly identified commonly shared upregulated endometrial DEG-transcript-probes (E < 0.06; >2 FC), that were regulating the gene functions of reproduction and growth (SELENOP), cytoskeleton organization and kinase activity (CDC42BPA), phosphatase activity (MINPP1), enzyme-binding and cell-population proliferation (VAV3), cancer-susceptibility candidate gene (CASC4), cytoskeletal protein-binding (COBLL1), ion-binding, enzyme regulator activity (ACAP2) Downregulated endometrial DEG-transcript-probes (E < 0.06; >2FC) were involved in regulating the gene functions of signal-transduction (TMEM33), catabolic and metabolic processes (KLHL15). Microarray validation experiment on selected candidate genes showed complementarity to significant endometrial DEG-transcript-probes responsible for the regulation of immune response (IL1B, S100A11), lipid metabolism (FABP3, PPARG), cell-adhesion (ITGAV), angiogenesis (IL1B), intercellular transmission (NMB), cell-adhesion (OPN) and response to stimuli (RBP4) was confirmed by RT-PCR. This study provides a clue that identified pregnancy-stage specific microarray transcript probes could be considered as candidate genes for recognition and establishment of early pregnancy in the pig.

3.
Vet Sci ; 6(2)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934933

RESUMEN

Global gene expression in liver transcriptome varies among cattle breeds. The present investigation was aimed to identify the differentially expressed genes (DEGs), metabolic gene networks and metabolic pathways in bovine liver transcriptome of young bulls. In this study, we comparatively analyzed the bovine liver transcriptome of dairy (Polish Holstein Friesian (HF); n = 6), beef (Hereford; n = 6), and dual purpose (Polish-Red; n = 6) cattle breeds. This study identified 895, 338, and 571 significant (p < 0.01) differentially expressed (DE) gene-transcripts represented as 745, 265, and 498 hepatic DE genes through the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-HF versus Polish-Red breeds comparisons, respectively. By combining all breeds comparisons, 75 hepatic DE genes (p < 0.01) were identified as commonly shared among all the three breed comparisons; 70, 160, and 38 hepatic DE genes were commonly shared between the following comparisons: (i) Polish-Red versus Hereford and Polish-HF versus Hereford; (ii) Polish-Red versus Hereford and Polish-HF versus Polish-Red; and (iii) Polish-HF versus Hereford and Polish-HF versus Polish-Red, respectively. A total of 440, 82, and 225 hepatic DE genes were uniquely observed for the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-Red versus Polish-HF comparisons, respectively. Gene ontology (GO) analysis identified top-ranked enriched GO terms (p < 0.01) including 17, 16, and 31 functional groups and 151, 61, and 140 gene functions that were DE in all three breed liver transcriptome comparisons. Gene network analysis identified several potential metabolic pathways involved in glutamine family amino-acid, triglyceride synthesis, gluconeogenesis, p38MAPK cascade regulation, cholesterol biosynthesis (Polish-Red versus Hereford); IGF-receptor signaling, catecholamine transport, lipoprotein lipase, tyrosine kinase binding receptor (Polish-HF versus Hereford), and PGF-receptor binding, (Polish-HF versus Polish-Red). Validation results showed that the relative expression values were consistent to those obtained by RNA-seq, and significantly correlated between the quantitative reverse transcription PCR (RT-qPCR) and RNA-seq (Pearson's r > 0.90). Our results provide new insights on bovine liver gene expressions among dairy versus dual versus beef breeds by identifying the large numbers of DEGs markers submitted to NCBI gene expression omnibus (GEO) accession number GSE114233, which can serve as useful genetic tools to develop the gene assays for trait-associated studies as well as, to effectively implement in genomics selection (GS) cattle breeding programs in Poland.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...