Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(42): 14488-14500, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817055

RESUMEN

Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone-substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater "holdase" activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone-substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone-client interactions and illustrate how protein surface-based mutational strategies can facilitate the rational improvement of molecular chaperones.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Periplasmáticas/metabolismo , Agregado de Proteínas , Animales , Bovinos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Lactalbúmina/química , Lactalbúmina/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Unión Proteica , Electricidad Estática , Especificidad por Sustrato
2.
ACS Chem Biol ; 15(4): 1078-1088, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32105441

RESUMEN

In contrast to the myriad approaches available to study protein misfolding and aggregation in vitro, relatively few tools are available for the study of these processes in the cellular context. This is in part due to the complexity of the cellular environment which, for instance, interferes with many spectroscopic approaches. Here, we describe a tripartite fusion approach that can be used to assess in vivo protein stability and solubility in the cytosol of Saccharomyces cerevisiae. Our biosensors contain tripartite fusions in which a protein of interest is inserted into antibiotic resistance markers. These fusions act to directly link the aggregation susceptibility and stability of the inserted protein to antibiotic resistance. We demonstrate a linear relationship between the thermodynamic stabilities of variants of the model folding protein immunity protein 7 (Im7) fused into the resistance markers and their antibiotic resistance readouts. We also use this system to investigate the in vivo properties of the yeast prion proteins Sup35 and Rnq1 and proteins whose aggregation is associated with some of the most prevalent neurodegenerative misfolding disorders, including peptide amyloid beta 1-42 (Aß42), which is involved in Alzheimer's disease, and protein α-synuclein, which is linked to Parkinson's disease.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Priones/química , Priones/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
3.
Curr Opin Struct Biol ; 48: 117-123, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29278775

RESUMEN

Recently, several innovative approaches have been developed that allow one to directly screen or select for improved protein folding in the cellular context. These methods have the potential of not just leading to a better understanding of the in vivo folding process, they may also allow for improved production of proteins of biotechnological interest.


Asunto(s)
Técnicas Biosensibles/métodos , Chaperonina 10/química , Chaperonina 60/química , Evolución Molecular Dirigida/métodos , Ingeniería de Proteínas/métodos , Coloración y Etiquetado/métodos , Biotecnología/métodos , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Pliegue de Proteína , Estabilidad Proteica , Termodinámica
4.
J Mol Biol ; 427(18): 2983-94, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26003922

RESUMEN

By employing a genetic selection that forces the cell to fold an unstable, aggregation-prone test protein in order to survive, we have generated bacterial strains with enhanced periplasmic folding capacity. These strains enhance the soluble steady-state level of the test protein. Most of the bacterial variants we isolated were found to overexpress one or more periplasmic proteins including OsmY, Ivy, DppA, OppA, and HdeB. Of these proteins, only HdeB has convincingly been previously shown to function as chaperone in vivo. By giving bacteria the stark choice between death and stabilizing a poorly folded protein, we have now generated designer bacteria selected for their ability to stabilize specific proteins.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/química , Periplasma/metabolismo , Pliegue de Proteína , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli , Proteínas de Escherichia coli/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/química , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Conformación Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...