Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1149292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457011

RESUMEN

Background: The 2021 World Health Organization (WHO) Central Nervous System (CNS) Tumor Classification has suggested that isocitrate dehydrogenase wildtype (IDH-wt) WHO grade-2/3 astrocytomas with molecular features of glioblastoma should be designated as "Glioblastoma, IDH-wildtype, WHO grade-4." This study analyzed the metabolic correlates of progression free and overall survival in "Glioblastoma, IDH-wildtype, WHO grade-4" patients using short echo time single voxel 1H-MRS. Methods: Fifty-seven adult patients with hemispheric glioma fulfilling the 2021 WHO CNS Tumor Classification criteria for "Glioblastoma, IDH-wildtype, WHO grade-4" at presurgery time point were included. All patients were IDH1/2-wt and TERTp-mut. 1H-MRS was performed on a 3 T MR scanner and post-processed using LCModel. A Mann-Whitney U test was used to assess the metabolic differences between gliomas with or without contrast enhancement and necrosis. Cox regression analysis was used to assess the effects of age, extent of resection, presence of contrast enhancement and necrosis, and metabolic intensities on progression-free survival (PFS) and overall survival (OS). Machine learning algorithms were employed to discern possible metabolic patterns attributable to higher PFS or OS. Results: Contrast enhancement (p = 0.015), necrosis (p = 0.012); and higher levels of Glu/tCr (p = 0.007), GSH/tCr (p = 0.019), tCho/tCr (p = 0.032), and Glx/tCr (p = 0.010) were significantly associated with shorter PFS. Additionally, necrosis (p = 0.049), higher Glu/tCr (p = 0.039), and Glx/tCr (p = 0.047) were significantly associated with worse OS. Machine learning models differentiated the patients having longer than 12 months OS with 81.71% accuracy and the patients having longer than 6 months PFS with 77.41% accuracy. Conclusion: Glx and GSH have been identified as important metabolic correlates of patient survival among "IDH-wt, TERT-mut diffuse gliomas" using single-voxel 1H-MRS on a clinical 3 T MRI scanner.

2.
Clin Imaging ; 93: 86-92, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36417792

RESUMEN

PURPOSE: This study aims to evaluate qualitative and quantitative imaging metrics along with clinical features affecting overall survival in glioblastomas and to classify them into high survival and low survival groups based on 12, 19, and 24 months thresholds using machine learning. METHODS: The cohort consisted of 98 adult glioblastomas. A standard brain tumor magnetic resonance (MR) imaging protocol, was performed on a 3T MR scanner. Visually Accessible REMBRANDT Images (VASARI) features were assessed. A Kaplan-Meier survival analysis followed by a log-rank test and multivariate Cox regression analysis were used to investigate the effects of VASARI features along with the age, gender, the extent of resection, pre- and post-KPS, ki67 and P53 mutation status on overall survival. Supervised machine learning algorithms were employed to predict the survival of glioblastoma patients based on 12, 19, and 24 months thresholds. RESULTS: Tumor location (p<0.001), the proportion of non-enhancing component (p=0.0482), and proportion of necrosis (p=0.02) were significantly associated with overall survival based on Kaplan-Meier analysis. Multivariate Cox regression analysis revealed that increases in proportion of non-enhancing component (p=0.040) and proportion of necrosis (p=0.039) were significantly associated with overall survival. Machine-learning models were successful in differentiating patients living longer than 12 months with 96.40% accuracy (sensitivity=97.22%, specificity=95.55%). The classification accuracies based on 19 and 24 months survival thresholds were 70.87% (sensitivity=83.02%, specificity=60.11%) and 74.66% (sensitivity=67.58%, specificity=82.08%), respectively. CONCLUSION: Employing clinical and VASARI features together resulted in a successful classification of glioblastomas that would have a longer overall survival.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Necrosis , Aprendizaje Automático , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...