Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Immunol Immunopathol ; 247: 110406, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35316702

RESUMEN

Avian influenza viruses (AIVs) and especially highly pathogenic (HP) AIVs of the H5 and H7 subtypes are of both veterinary and public health concern worldwide. In response to the demand for effective vaccines against H5N1 HPAIVs, we produced recombinant protein based on hemagglutinin (HA), a protective viral antigen. A fragment of the HA ectodomain, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies. Finally, the protein was formulated in Tris-HCl buffer of pH 8.0 or PBS of pH 7.4 to obtain antigens denoted rH5-1 and rH5-2, respectively. The systemic prime and boost immunizations proved that rH5-1 adsorbed to aluminum hydroxide induces anti-H5 HA neutralizing antibodies and protective immune responses against H5N1 HPAIVs in chickens. The present studies were aimed at stimulating immune responses via the mucosal routes using the systemic prime-mucosal boost strategy. Efficacy trials were performed in commercial layer chickens. For systemic and mucosal immunizations, H5 HA antigens were adjuvanted with aluminum hydroxide and chitosan glutamate, respectively. The first dose of rH5-2 was administered subcutaneously, while its second dose was administered subcutaneously, intraocularly, oculo-nasally, or intranasally. rH5-1 was delivered to the subcutaneously primed chickens by the intranasal route. Post-vaccination sera were analyzed for anti-H5 HA antibodies, using homologous ELISA and heterologous FluAC H5 and hemagglutination inhibition tests. Intraocularly and oculo-nasally delivered rH5-2 mixed with chitosan glutamate was capable of stimulating anti-H5 HA IgY antibody responses in the subcutaneously primed chickens; however, it was ineffective when administered by the intranasal route. Efficient intranasal boosting was achieved using rH5-1. The enhanced production of antigen-specific antibodies was reflected in the development of H5-subtype specific and hemagglutination inhibiting antibodies. Conclusively, the subcutaneous prime and oculo-nasal boost vaccination is proposed as the target strategy for future optimization.


Asunto(s)
Quitosano , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Hidróxido de Aluminio , Animales , Anticuerpos Antivirales , Pollos , Ácido Glutámico , Hemaglutininas , Inmunización Secundaria/veterinaria , Gripe Aviar/prevención & control , Vacunación/veterinaria
2.
Virol J ; 18(1): 91, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931074

RESUMEN

BACKGROUND: H5-subtype highly pathogenic (HP) avian influenza viruses (AIVs) cause high mortality in domestic birds and sporadic infections in humans with a frequently fatal outcome, while H5N1 viruses have pandemic potential. Due to veterinary and public health significance, these HPAIVs, as well as low pathogenicity (LP) H5-subtype AIVs having a propensity to mutate into HP viruses, are under epidemiologic surveillance and must be reported to the World Organization for Animal Health (OIE). Our previous work provided a unique panel of 6 different monoclonal antibodies (mAbs) against H5 hemagglutinin (HA), which meets the demand for high-specificity tools for monitoring AIV infection and vaccination in poultry. In this study, we selected one of these mAbs to develop an epitope-blocking (EB) ELISA for detecting H5 subtype-specific antibodies in chicken sera (H5 EB-ELISA). METHODS: In the H5 EB-ELISA, H5 HA protein produced in a baculovirus-expression vector system was employed as a coating antigen, and the G-7-27-18 mAb was employed as a blocking antibody. The performance characteristics of the assay were evaluated by testing 358 sera from nonimmunized chickens and chickens immunized with AIVs of the H1-H16 subtypes or recombinant H5 HA antigen to obtain the reference and experimental antisera, respectively. The samples were classified as anti-H5 HA positive or negative based on the results of the hemagglutination inhibition (HI) assay, the gold standard in subtype-specific serodiagnosis. RESULTS: The H5 EB-ELISA correctly discriminated between the anti-H5 HA negative sera, including those against the non-H5 subtype AIVs, and sera positive for antibodies against the various-origin H5 HAs. Preliminary validation showed 100% analytical and 97.6% diagnostic specificities of the assay and 98.0% and 99.1% diagnostic sensitivities when applied to detect the anti-H5 HA antibodies in the reference and experimental antisera, respectively. CONCLUSIONS: The H5 EB-ELISA performed well in terms of diagnostic estimates. Thus, further optimization and validation work using a larger set of chicken sera and receiver operating characteristic (ROC) analysis are warranted. Moreover, the present assay provides a valuable basis for developing multispecies screening tests for birds or diagnostic tests for humans.


Asunto(s)
Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Anticuerpos Monoclonales/inmunología , Pollos/inmunología , Epítopos , Sueros Inmunes/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Aviar/diagnóstico
3.
Front Immunol ; 10: 2006, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552018

RESUMEN

The highly pathogenic (HP) avian influenza virus (AIV), H5N1 and reassortant H5-subtype HPAIVs, H5N2, H5N6, and H5N8, cause high mortality in domestic birds, resulting in economic losses in the poultry industry. H5N1 and H5N6 also pose significant public health risks and H5N1 viruses are a permanent pandemic threat. To control HPAIVs, eukaryotic expression systems have traditionally been exploited to produce vaccines based on hemagglutinin (HA), a protective viral antigen. In contrast, we used a bacterial expression system to produce vaccine targeting the HA protein. A fragment of the HA ectodomain from H5N1, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies. The resulting antigen, rH5-E. coli, was validated in terms of conformational integrity and oligomerization status. Previously, the protective efficacy of rH5-E. coli adjuvanted with aluminum hydroxide, has been positively verified by challenging the specific pathogen-free layer chickens with homologous and heterologous H5N1 HPAIVs. Protection was provided primarily by the H5 subtype-specific antibodies, as detected in the FluAC H5 test. The present studies were conducted to assess the performance of alum-adjuvanted rH5-E. coli in commercial birds. Broiler chickens were vaccinated twice with 25 µg of rH5-E. coli at 2- and 4-week intervals, while the layer chickens were vaccinated with 5- to 25-µg antigen doses at 4- and 6-week intervals. Post-vaccination sera were analyzed for anti-H5 HA antibodies, using homologous ELISA and heterologous FluAC H5 and hemagglutination inhibition (HI) tests. Prime-boost immunizations with rH5-E. coli elicited H5 HA-specific antibodies in all the chickens tested. Two antigen doses administered at 4- or 6-week intervals were sufficient to induce neutralizing antibodies against H5-subtype HAs; however, they were ineffective when applied with a 2-week delay. In the layers, 80% to 100% of individuals developed antibodies that were active in the FluAC H5 and/or HI tests. A dose-sparing effect was seen when using the longer prime-boost interval. In the broiler chickens, 62.5% positivity was achieved in the FluAC H5 and/or HI tests. The trials confirmed the vaccine potential of rH5-E. coli and provided indications for anti-influenza vaccination with respect to the chicken type and immunization scheme.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Vacunación/métodos , Animales , Pollos , Escherichia coli/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Sueros Inmunes/inmunología , Sueros Inmunes/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/prevención & control , Gripe Aviar/virología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
4.
J Immunol Res ; 2019: 2463731, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729136

RESUMEN

H1N1 influenza virus is still regarded as a serious pandemic threat. The most effective method of protection against influenza virus and the way to reduce the risk of epidemic or pandemic spread is vaccination. Influenza vaccine manufactured in a traditional way, though well developed, has some drawbacks and limitations which have stimulated interest in developing alternative approaches. In this study, we demonstrate that the recombinant H1 vaccine based on the hydrophilic haemagglutinin (HA) domain and produced in the yeast system elicited high titres of serum haemagglutination-inhibiting antibodies in mice. Transmission electron microscopy showed that H1 antigen oligomerizes into functional higher molecular forms similar to rosette-like structures. Analysis of the N-linked glycans using mass spectrometry revealed that the H1 protein is glycosylated at the same sites as the native HA. The recombinant antigen was secreted into a culture medium reaching approximately 10 mg/l. These results suggest that H1 produced in Pichia pastoris can be considered as the vaccine candidate against H1N1 virus.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Animales , Antígenos Virales/inmunología , Femenino , Inmunización , Vacunas contra la Influenza/genética , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Pichia/genética , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
5.
Virol J ; 15(1): 13, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334981

RESUMEN

BACKGROUND: The highly pathogenic avian influenza viruses of the H5 subtype, such as the H5N1 viral strains or the novel H5N8 and H5N2 reassortants, are of both veterinary and public health concern worldwide. To combat these viruses, monoclonal antibodies (mAbs) against H5 hemagglutinin (HA) play a significant role. These mAbs are effective diagnostic and therapeutic agents and powerful tools in vaccine development and basic scientific research. The aim of this study was to obtain diagnostically valuable mAbs with broad strain specificity against H5-subtype AIVs. RESULTS: We applied the hybridoma method to produce anti-HA mAbs. The cloning and screening procedures resulted in the selection of 7 mouse hybridoma cell lines and their respective antibody clones. Preliminary immunoreactivity studies showed that these newly established mAbs, all of the IgG1 isotype, had high specificity and broad-range activities against the H5 HAs. However, these studies did not allow for a clear distinction among the selected antibodies and mAb-secreting hybridoma clones. To differentiate the analyzed mAbs and determine the exact number of hybridoma clones, peptide mapping of the Fc and Fab fragments was performed using a Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF/TOF) mass spectrometer. Detailed analyses of the acquired MS and MS/MS spectra confirmed that the Fc fragments constituted highly conserved species- and isotype-immunoglobulin components, whereas the Fab fragments exhibited considerable variation in the sequences that determine antibody specificity. This approach enabled unambiguous characterization of the selected mAbs according to their peptide composition. As a result, 6 different clones were distinguished. CONCLUSIONS: Our work provided a unique panel of anti-H5 HA mAbs, which meets the demand for novel, high-specificity analytical tools for use in serologic surveillance. Applications of these mAbs in areas other than diagnostics are also possible. Moreover, we demonstrated for the first time that peptide mapping of antibody fragments with mass spectrometry is an efficient method for the differentiation of antibody clones and relevant antibody-producing cell lines. The method may be successfully used to characterize mAbs at the protein level.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Fragmentos Fab de Inmunoglobulinas/inmunología , Espectrometría de Masas , Ratones
7.
PLoS One ; 12(2): e0172008, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28212428

RESUMEN

The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of H5 subtype-specific neutralizing antibodies in anti-influenza immunity and a novel correlate of protection are indicated.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos , Pollos , Proteínas de Escherichia coli/inmunología , Hemaglutininas/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Hemaglutininas/biosíntesis , Hemaglutininas/química , Inmunidad Humoral , Especificidad de la Especie
8.
Acta Biochim Pol ; 64(1): 85-92, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27942613

RESUMEN

Hemagglutinin (HA), as a major surface antigen of influenza virus, is widely used as a target for production of neutralizing antibodies. Monoclonal antibody, mAb6-9-1, directed against HA of highly pathogenic avian influenza virus A/swan/Poland/305-135V08/2006(H5N1) was purified from mouse hybridoma cells culture and characterized. The antigenic specificity of mAb6-9-1 was verified by testing its cross-reactivity with several variants of HA. The mimotopes recognized by mAb6-9-1 were selected from two types of phage display peptide libraries. The comparative structural model of the HA variant used for antibody generation was developed to further facilitate epitope mapping. Based on the sequences of the affinity- selected polypeptides and the structural model of HA the epitope was located to the region near the receptor binding site (RBS). Such localization of the epitope recognized by mAb6-9-1 is in concordance with its moderate hemagglutination inhibiting activity and its antigenic specificity. Additionally, total RNA isolated from the hybridoma cell line secreting mAb6-9-1 was used for obtaining two variants of cDNA encoding recombinant single-chain variable fragment (scFv) antibody. To ensure high production level and solubility in bacterial expression system, the scFv fragments were produced as chimeric proteins in fusion with thioredoxin or displayed on a phage surface after cloning into the phagemid vector. Specificity and affinity of the recombinant soluble and phage-bound scFv were assayed by suitable variants of ELISA test. The observed differences in specificity were discussed.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Hemaglutininas/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , ADN Complementario , Epítopos , Hibridomas , Ratones , Biblioteca de Péptidos
9.
Anal Bioanal Chem ; 407(25): 7807-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26297459

RESUMEN

This paper describes the development of a biosensor for the detection of anti-hemagglutinin antibodies against the influenza virus hemagglutinin. The steps of biosensor fabrications are as follows: (i) creation of a mixed layer containing the thiol derivative of dipyrromethene and 4-mercapto-1-butanol, (ii) complexation of Cu(II) ions, (iii) oriented immobilization of the recombinant histidine-tagged hemagglutinin, and (iv) filling free spaces with bovine serum albumin. The interactions between recombinants hemagglutinin from the highly pathogenic avian influenza virus type H5N1 and anti-hemagglutinin H5 monoclonal antibodies were explored with Osteryoung square-wave voltammetry. The biosensor displayed a good detection limit of 2.4 pg/mL, quantification limit of 7.2 pg/mL, and dynamic range from 4.0 to 100.0 pg/mL in buffer. In addition, this analytical device was applied for the detection of antibodies in hen sera from individuals vaccinated and non-vaccinated against the avian influenza virus type H5N1. The limit of detection for the assay was the dilution of sera 1: 7 × 10(6), which is about 200 times better than the enzyme-linked immunosorbent assay.


Asunto(s)
Anticuerpos Antivirales/sangre , Técnicas Biosensibles/instrumentación , Pollos/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Aviar/sangre , Animales , Anticuerpos Antivirales/inmunología , Pollos/inmunología , Pollos/virología , Cobre/química , Técnicas Electroquímicas/instrumentación , Electrodos , Femenino , Oro/química , Inmunoensayo/instrumentación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/diagnóstico , Gripe Aviar/inmunología , Gripe Aviar/virología , Límite de Detección , Porfobilinógeno/análogos & derivados , Porfobilinógeno/química
11.
Acta Biochim Pol ; 61(3): 609-14, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25273565

RESUMEN

Gram-positive and nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of new, safe systems of heterologous protein expression. Recombinant LAB has been shown to induce specific local and systemic immune response against selected pathogens, and could be a good alternative to classical attenuated carriers. The main goal of our study was to express the avian influenza haemagglutinin (H5) and chicken interleukin 2 (chIL-2) in Lactococcus lactis. Results of this study were anticipated to lead to construction of lactococcal strain(s) with potential vaccine properties against the avian influenza A (H5N1) virus. Expression of the cloned H5 gene, its His-tagged variant and chIL-2 gene, under the control of the ptcB gene promoter was attested by RT-PCR on transcriptional level and Western or dot blot analysis on translational level, demonstrating that system can be an attractive solution for production of heterologous proteins. The results of the preliminary animal trial conducted in mice are a promising step toward development of a vaccine against avian bird flu using Lactococcus lactis cells as antigen carriers.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/prevención & control , Interleucina-2/biosíntesis , Lactococcus lactis/genética , Animales , Pollos , Vectores Genéticos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/química , Vacunas contra la Influenza , Interleucina-2/genética , Ratones , Regiones Promotoras Genéticas
12.
Acta Biochim Pol ; 61(3): 597-602, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25210934

RESUMEN

The A/swan/Poland/305-135V08/2006 (H5N1-subtype) hemagglutinin (HA) gene was cloned and expressed in yeast Pichia pastoris (P. pastoris). The HA cDNA lacking the C-terminal transmembrane anchor-coding sequence was fused to an α-factor leader peptide and placed under control of the methanol-inducible P. pastoris alcohol oxidase 1 (AOX1) promoter. Two P. pastoris strains: SMD 1168 and KM 71 were used for protein expression. Recombinant HA protein was secreted into the culture medium reaching an approximately 15 mg/L (KM 71 strain). Fusion protein with a His6 tag was purified to homogeneity in one step affinity chromatography. SDS-PAGE and MS/MS analysis indicated that the protein is cleaved into HA1 and HA2 domains linked by a disulfide bond. Analysis of the N-linked glycans revealed that the overexpressed HA is fully glycosylated at the same sites as the native HA in the vaccine strain. Immunological activity of the hemagglutinin protein was tested in mice, where rHA elicited a high immune response.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Pichia , Animales , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/genética , Ratones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Espectrometría de Masas en Tándem
13.
Acta Biochim Pol ; 61(3): 561-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25195143

RESUMEN

Recombinant subunit vaccines based on hemagglutinin proteins produced in bacteria (bacterial HAs) are promising candidates for enhancing the supply of vaccines against influenza, especially for a pandemic. Over 20 years after the failure to obtain the antigen with native HA characteristics in the early 1980's, there are increasing data on successful production of HA proteins in bacteria. The vast majority of bacterial HAs have been based on the HA1 subunit of HA expressed separately or as a component of conjugate vaccines, but those based on the ectodomain and the HA2 subunit have also been reported. The most of HAs have been efficiently expressed as insoluble aggregates called inclusion bodies. Refolded and purified proteins were extensively studied for structure, the ability to bind to sialic acid-containing receptors, antigenicity, immunogenicity and efficacy. The results from these studies contradict the view that glycosylation determines the correct structure of the hemagglutinin, as they proved that bacterial HAs can be valuable vaccine antigens when appropriate folding and purification methods are applied to rationally designed proteins. The best evidence for success in bacterial production of protective HA is that vaccines based on proprietary Toll-like Receptor (VaxInnate) and bacteriophage Qß-VLPs (Cytos Biotechnology) technologies have been advanced to clinical studies.


Asunto(s)
Bacterias , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Vacunas contra la Influenza , Gripe Humana/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/biosíntesis , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología
14.
Immunol Lett ; 91(2-3): 197-204, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15019290

RESUMEN

A fragment of non-glycosylated E2 antigen of classical swine fever virus (CSFV), lacking the trans-membrane anchor (TM-) of the native glycoprotein, was produced in recombinant Escherichia coli strain BL21(DE3) in the form of inclusion bodies. These inclusion bodies isolated from the bacteria cells were administrated orally to mice twice at either 10 or 50 microg per dose. Each mouse fed with inclusion bodies carrying the E2 antigen responded with plasma antibodies and/or fecal IgA at least once during the entire investigation. Our study showed the capacity of inclusion bodies to induce both systemic and mucosal responses as well as to evoke relatively-long mucosal memory when fed to mice at low-number vaccination schedule and without any adjuvant. We propose the use of inclusion bodies for oral vaccination as an alternative to artificial systems for delivery of recombinant antigens by the oral route. Very few steps are needed to obtain an antigen ready for use as a vaccine. The procedure is easy and inexpensive and can be used for development of vaccine against classical swine fever.


Asunto(s)
Antígenos Virales/administración & dosificación , Antígenos Virales/inmunología , Virus de la Fiebre Porcina Clásica/inmunología , Escherichia coli/citología , Escherichia coli/inmunología , Cuerpos de Inclusión/inmunología , Vacunas Virales/administración & dosificación , Administración Oral , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Virus de la Fiebre Porcina Clásica/genética , Escherichia coli/genética , Heces , Femenino , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Ratones , Ratones Endogámicos BALB C , Porcinos , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...