Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(28): eabn5315, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857507

RESUMEN

Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures. We demonstrated that pulsatile release is governed by a sudden increase in porosity of the polymeric matrix, leading to the formation of a porous path connecting the core to the environment. Moreover, the release kinetics within the range studied remained primarily independent of the particle geometry but highly dependent on its composition. A qualitative technique was developed to study the pattern of pH evolution in the particles. A computational model successfully modeled deformations, indicating sudden expansion of the particle before onset of release. Results of this study contribute to the understanding and design of advanced drug delivery systems.

2.
Small Methods ; 6(9): e2200232, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764872

RESUMEN

Soft lithography provides a convenient and effective method for the fabrication of microdevices with uniform size and shape. However, formation of an embossed, connective film as opposed to discrete features has been an enduring shortcoming associated with soft lithography. Removing this residual layer requires additional postprocessing steps that are often incompatible with organic materials. This limits adaptation and widespread realization of soft lithography for broader applications particularly in drug discovery and drug delivery fields. A novel and versatile approach is demonstrated that enables fabrication of discrete, multilayered, fillable, and harvestable microparticles directly from any thermoplastic polymer, even at very high molecular weights. The approach, isolated microparticle replication via surface-segregating polymer blend mold, utilizes a random copolymer additive, designed with a highly fluorinated segment that, when blended with the mold's matrix, spontaneously orients to the surface conferring an extremely low surface energy and nonwetting properties to the template. The extremely nonwetting properties of the mold are further utilized to load soluble biologics directly into the built-in microwells in a rapid and efficient manner using an innovative screen-printing approach. It is believed that this approach holds promise for fabrication of large-array, 3D, complex microstructures, and is a significant step toward clinical translation of microfabrication technologies.


Asunto(s)
Productos Biológicos , Polímeros , Microtecnología/métodos , Plásticos , Polímeros/química , Impresión
3.
J Control Release ; 331: 503-514, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33516755

RESUMEN

There is a dire need for innovative solutions to address global health needs. Polymeric systems have been shown to provide substantial benefit to all sectors of healthcare, especially for their ability to extend and control drug delivery. Herein, we review polymeric drug delivery devices for vaccines, tuberculosis, and contraception.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Vacunas , Sistemas de Liberación de Medicamentos , Salud Global , Polímeros
4.
ACS Appl Mater Interfaces ; 11(13): 12854-12862, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30844237

RESUMEN

Membranes that can separate molecules of similar size based on chemical features could transform chemical manufacturing. We demonstrate membranes with functional, 1-3 nm pores prepared using a simple and scalable approach: coating a porous support with random copolymer micelles in alcohol, followed by precipitation in water and functionalization of pore surfaces. This approach was used to prepare membranes that can separate two hormones of similar size and charge, differentiated by aromaticity, mediated through π-π interactions between the aromatic solute and pore walls functionalized with phenol groups. The aromatic molecule permeates more slowly in single-solute experiments. In competitive diffusion experiments, however, it permeates 7.1 times faster than its nonaromatic analogue. This approach can be used to manufacture membranes for complex separations based on various intermolecular interactions.

5.
ACS Nano ; 12(1): 95-108, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29205035

RESUMEN

Membranes that can separate compounds based on molecular properties can revolutionize the chemical and pharmaceutical industries. This study reports membranes capable of separating organic molecules of similar size based on their electrostatic charge. These membranes feature a network of carboxylate-functionalized 1-3 nm nanochannels, manufactured by a simple, scalable coating process: a porous support is coated with a packed array of polymer micelles in alcohol, formed by the self-assembly of a water-insoluble random copolymer with fluorinated and carboxyl functional repeat units. The interstices between these micelles serve as charged nanochannels through which water and solutes can pass. The negatively charged carboxylate groups lead to high separation selectivities between organic solutes of similar size but different charge. In single-solute diffusion experiments, neutral solutes permeate up to 263 times faster than negatively charged compounds of similar size. This selectivity is further enhanced in experiments with mixtures of these solutes. No permeation of the anionic compound was observed for over 24 h. In filtration experiments, these membranes separate anionic and neutral organic compounds while exhibiting water fluxes comparable to that of commercial membranes. Furthermore, carboxylate groups can be functionalized, creating membranes with nanopores with customizable functionality to enable a broad range of selective separations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...