Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38775852

RESUMEN

Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1275-1310, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37688622

RESUMEN

Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.


Asunto(s)
MicroARNs , Oligonucleótidos , Humanos , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , MicroARNs/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , ARN Interferente Pequeño , Péptidos/uso terapéutico
3.
J Biochem Mol Toxicol ; 37(11): e23468, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491939

RESUMEN

Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1ß was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.


Asunto(s)
Encefalopatía Hepática , Ketamina , Enfermedades del Sistema Nervioso , Síndromes de Neurotoxicidad , Ratones , Animales , Ketamina/efectos adversos , Amoníaco/toxicidad , Amoníaco/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Encefalopatía Hepática/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Biomarcadores/metabolismo
4.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1557-1572, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097067

RESUMEN

Lung injury is a significant complication associated with cholestasis/cirrhosis. This problem significantly increases the risk of cirrhosis-related morbidity and mortality. Hence, finding effective therapeutic options in this field has significant clinical value. Severe inflammation and oxidative stress are involved in the mechanism of cirrhosis-induced lung injury. Taurine (TAU) is an abundant amino acid with substantial anti-inflammatory and antioxidative properties. The current study was designed to evaluate the role of TAU in cholestasis-related lung injury. For this purpose, bile duct ligated (BDL) rats were treated with TAU (0.5 and 1% w: v in drinking water). Significant increases in the broncho-alveolar lavage fluid (BALF) level of inflammatory cells (lymphocytes, neutrophils, basophils, monocytes, and eosinophils), increased IgG, and TNF-α were detected in the BDL animals (14 and 28 days after the BDL surgery). Alveolar congestion, hemorrhage, and fibrosis were the dominant pulmonary histopathological changes in the BDL group. Significant increases in the pulmonary tissue biomarkers of oxidative stress, including reactive oxygen species formation, lipid peroxidation, increased oxidized glutathione levels, and decreased reduced glutathione, were also detected in the BDL rats. Moreover, significant myeloperoxidase activity and nitric oxide levels were seen in the lung of BDL rats. It was found that TAU significantly blunted inflammation, alleviated oxidative stress, and mitigated lung histopathological changes in BDL animals. These data suggest TAU as a potential protective agent against cholestasis/cirrhosis-related lung injury.


Asunto(s)
Colestasis , Lesión Pulmonar , Neumonía , Ratas , Animales , Taurina/farmacología , Taurina/uso terapéutico , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Estrés Oxidativo , Conductos Biliares/cirugía , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Ligadura/efectos adversos , Antioxidantes/uso terapéutico , Cirrosis Hepática/patología , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Neumonía/patología , Hígado
5.
J Pharm Pharmacol ; 74(8): 1085-1116, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35728949

RESUMEN

OBJECTIVES: Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS: CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY: Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.


Asunto(s)
Péptidos de Penetración Celular , Apoptosis , Péptidos de Penetración Celular/metabolismo , Sistemas de Liberación de Medicamentos , Estrés Oxidativo , Proteínas
6.
Eur J Pharm Sci ; 169: 106094, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896590

RESUMEN

Viral infections are a great threat to human health. Currently, there are no effective vaccines and antiviral drugs against the majority of viral diseases, suggesting the need to develop novel and effective antiviral agents. Since the intracellular delivery of antiviral agents, particularly the impermeable molecules, such as peptides, proteins, and nucleic acids, are essential to exert their therapeutic effects, using a delivery system is highly required. Among various delivery systems, cell-penetrating peptides (CPPs), a group of short peptides with the unique ability of crossing cell membrane, offer great potential for the intracellular delivery of various biologically active cargoes. The results of numerous in vitro and in vivo studies with CPP conjugates demonstrate their promise as therapeutic agents in various medical fields including antiviral therapy. The CPP-mediated delivery of various antiviral agents including peptides, proteins, nucleic acids, and nanocarriers have been associated with therapeutic efficacy both in vitro and in vivo. This review describes various aspects of viruses including their biology, pathogenesis, and therapy and briefly discusses the concept of CPP and its potential in drug delivery. Particularly, it will highlight a variety of CPP applications in the management of viral infections.


Asunto(s)
Péptidos de Penetración Celular , Ácidos Nucleicos , Vacunas , Antivirales , Sistemas de Liberación de Medicamentos , Humanos
7.
Mol Biotechnol ; 63(12): 1155-1168, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34268672

RESUMEN

Carboxypeptidase G2 (CPG2) is a bacterial enzyme widely used to detoxify methotrexate (MTX) and in enzyme/prodrug therapy for cancer treatment. However, several drawbacks, such as instability, have limited its efficiency. Herein, we have evaluated the properties of a putative CPG2 from Acinetobacter sp. 263903-1 (AcCPG2). AcCPG2 is compared with a CPG2 derived from Pseudomonas sp. strain RS-16 (PsCPG2), available as an FDA-approved medication called glucarpidase. After modeling AcCPG2 using the I-TASSER program, the refined model was validated by PROCHECK, VERIFY 3D and according to the Z score of the model. Using computational analyses, AcCPG2 displayed higher thermodynamic stability and a lower aggregation propensity than PsCPG2. AcCPG2 showed an optimum pH of 7.5 against MTX and was stable over a pH range of 5-10. AcCPG2 exhibited optimum activity at 50 °C and higher thermal stability at a temperature range of 20-70 °C compared to PsCPG2. The Km value of the purified AcCPG2 toward folate and MTX was 31.36 µM and 44.99 µM, respectively. The Vmax value of AcCPG2 for folate and MTX was 125.80 µmol/min/mg and 48.90  µmol/min/mg, respectively. Accordingly, thermostability and pH versatility makes AcCPG2 a potential biobetter variant for therapeutic applications.


Asunto(s)
Acinetobacter/enzimología , gamma-Glutamil Hidrolasa/química , Secuencia de Aminoácidos , Estabilidad de Enzimas , Ácido Fólico/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Metotrexato/metabolismo , Modelos Moleculares , Pseudomonas/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Temperatura , Termodinámica , gamma-Glutamil Hidrolasa/genética , gamma-Glutamil Hidrolasa/aislamiento & purificación , gamma-Glutamil Hidrolasa/metabolismo
8.
Clin Exp Hepatol ; 7(1): 30-40, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34027113

RESUMEN

AIM OF THE STUDY: Cholestasis is a serious complication affecting other organs such as the liver and kidney. Oxidative stress and mitochondrial impairment are proposed as the primary mechanisms for cholestasis-induced organ injury. Taurine (TAU) is the most abundant free amino acid in the human body, which is not incorporated in the structure of proteins. Several pharmacological effects have been attributed to TAU. It has been reported that TAU effectively mitigated oxidative stress and modulated mitochondrial function. The current study aimed to evaluate the impact of TAU on oxidative stress biomarkers and mitochondrial parameters in the kidney of cholestatic animals. MATERIAL AND METHODS: Bile duct ligated (BDL) rats were used as an antioxidant model of cholestasis. Animals were treated with TAU (500 and 1000 mg/kg, oral) for seven consecutive days. Animals were anesthetized (thiopental 80 mg/kg, i.p.), and kidney and blood specimens were collected. RESULTS: Severe elevation in serum and urine biomarkers of renal injury was evident in the BDL group. Significant lipid peroxidation, reactive oxygen species (ROS) formation, and protein carbonylation were detected in the kidney of BDL animals. Furthermore, depleted glutathione reservoirs and a significant decrease in the antioxidant capacity of renal tissue were detected in cholestatic rats. Renal tubular atrophy and interstitial inflammation were evident in BDL animals. Cholestasis also caused significant mitochondrial dysfunction in the kidney. TAU significantly prevented cholestasis-induced renal injury by inhibiting oxidative stress and mitochondrial impairment. CONCLUSIONS: These data indicate TAU as a potential therapeutic agent in the management of cholestasis-induced renal injury.

9.
Biotechnol Prog ; 37(1): e3071, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32840065

RESUMEN

Hyperpigmentation disorders negatively influence an individual's quality of life and may cause emotional distress. Over the years, various melanogenesis inhibitors (mainly tyrosinase inhibitors) have been developed, most of which with low efficacy or high toxicity. Although metabolic engineering by deviation in the flux of substrate is of considerable interest, trials to develop a melanogenesis inhibitor based on L-tyrosine (L-Tyr) restriction are missing. We propose a novel proteinaceous melanogenesis inhibitor called tyrosine ammonia-lyase (TAL), an enzyme that catalyzes the conversion of L-Tyr to p-coumaric acid and ammonia. Since the cell membrane can act as a barrier for intracellular protein delivery, we have covalently conjugated a recombinant TAL enzyme from Rhodobacter sphaeroides (RsTAL) to a trans-activator of transcription (TAT) cell-penetrating peptide (CPP) to afford the intracellular delivery. The heterologously expressed TAT-RsTAL fusion protein was delivered successfully into B16F10 melanocytes as confirmed by the direct fluorescence microscopy with increased intensity from 30 to 180 min. TAT-RsTAL showed sufficient intracellular activity of about 0.83 ± 0.04 and 0.34 ± 0.03 nmol•mg-1 •s-1 for the native and inclusion body-extracted conjugates, respectively. The conjugate inhibited melanin biosynthesis in B16F10 cells in a time-dependent manner. Melanin accumulation was inhibited by 12.7 ± 6.2%, 28.2 ± 5.7%, and 33.9 ± 2.9% compared to the nontreated control groups after 24, 48, and 72 hr of incubation, respectively. L-Tyr restriction had no significant effect on the cell viability up to a concentration of 100 µgml-1 even after 72 hr. According to the observed hypopigmentary effect of the conjugate in this study, TAT-RsTAL can be suggested as a melanogenesis inhibitor for further investigations.


Asunto(s)
Amoníaco-Liasas/metabolismo , Péptidos de Penetración Celular/farmacología , Productos del Gen tat/metabolismo , Melaninas/metabolismo , Melanoma Experimental/tratamiento farmacológico , Animales , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos , Productos del Gen tat/química , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Rhodobacter sphaeroides/enzimología , Tirosina/metabolismo
10.
Clin Exp Hepatol ; 7(4): 377-389, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35402721

RESUMEN

Aim of the study: Cholestasis is the stoppage of bile flow that primarily affects liver function. On the other hand, kidneys are also severely influenced during cholestasis. Cholestasis-induced kidney injury is known as cholemic nephropathy (CN). There is no precise pharmacological option in CN. Previous studies revealed that oxidative stress plays a crucial role in the pathogenesis of CN. On the other hand, the positive effects of pentoxifylline (PTX) against renal injury with different etiologies have been frequently reported. In the current study, the potential nephroprotective role of PTX in cholestasis-induced renal injury is investigated. Material and methods: Bile duct ligated (BDL) rats were treated with PTX (10, 50, and 100 mg/kg), and renal markers of oxidative stress, urine level of inflammatory cytokines, as well as renal histopathological alterations were monitored. Results: Significant changes in oxidative stress markers were detected in the BDL group. On the other hand, it was found that PTX (10, 50, and 100 mg/kg) significantly ameliorated cholestasis-induced oxidative stress in renal tissue. Renal histopathological changes, including interstitial inflammation, tubular atrophy, fibrosis, and cast formation, were detected in the BDL rats. Moreover, urine pro-inflammatory cytokines [interleukin (IL)-1, IL-9, IL-18, tumor necrosis factor α (TNF-α), and interferon γ (INF-γ)] were significantly increased in the cholestatic animals. PTX (10, 50, and 100 mg/kg, 14 days) significantly ameliorated renal histopathological alterations and urine levels of inflammatory cytokines. Conclusions: These data indicate a potential nephroprotective role for PTX in cholestasis. The effects of PTX on oxidative stress parameters and the inflammatory response could play a primary role in its renoprotective mechanisms.

11.
Curr Res Pharmacol Drug Discov ; 1: 30-38, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34909640

RESUMEN

Cirrhosis-induced renal injury or cholemic nephropathy (CN) is a serious clinical complication with poor prognosis. CN could finally lead to renal failure and the need for organ transplantation. Unfortunately, there is no specific pharmacological intervention against CN to date. On the other hand, various studies mentioned the role of oxidative stress and mitochondrial impairment in the pathogenesis of CN. The current study aimed to evaluate the potential protective effects of NAC as a thiol-reducing agent and antioxidant in CN. Bile duct ligation (BDL) was used as a reliable animal model of cholestasis. BDL animals received NAC (0.25% and 1% w: v) in drinking water for 28 consecutive days. Finally, urine, blood, and kidney samples were collected and analyzed. Significant elevation in serum biomarkers of renal injury, along with urine markers of kidney damage, was evident in the BDL group. Moreover, markers of oxidative stress, including reactive oxygen species (ROS) formation, lipid peroxidation, protein carbonylation, and increased oxidized glutathione (GSSG) were evident detected in the kidney of cholestatic rats. Renal tissue antioxidant capacity and reduced glutathione (GSH) were also significantly depleted in the BDL group. Significant mitochondrial depolarization, depleted ATP content, and mitochondrial permeabilization was also detected in mitochondria isolated from the kidney of cholestatic animals. Renal histopathological alterations consisted of significant tissue fibrosis, interstitial inflammation, and tubular atrophy. It was found that NAC (0.25 and 1% in drinking water for 28 consecutive days) blunted histopathological changes, decreased markers of oxidative stress, and improved mitochondrial indices in the kidney of cirrhotic rats. Moreover, serum and urine biomarkers of renal injury were also mitigated in upon NAC treatment. These data indicate a potential renoprotective role for NAC in cholestasis. The effects of NAC on cellular redox state and mitochondrial function seem to play a fundamental role in its renoprotective effects during CN.

12.
Enzyme Microb Technol ; 122: 36-54, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30638507

RESUMEN

The enzyme phenylalanine ammonia lyase (PAL) is of special importance for the treatment of phenylketonuria patients. The aim of this study was to find a stable recombinant PAL with suitable kinetic properties among all natural PAL producing species using in silico and experimental approaches. To find such a stable PAL among 481 natural isoforms, 48,000 of 3-D models were predicted using the Modeller 9.10 program and evaluated by Ramachandran plot. Correlation analysis between Ramachandran plot and the energy of different thermodynamic components indicated that this plot could be an appropriate tool to predict protein stability. Hence, PAL6 from Lotus japonicus (LjPAL6) was selected as a stable isoform. Molecular dynamic (MD) simulation for 50 ns and docking has been conducted for LjPAL6-phenylalanine complex. The best PAL-phenylalanine frame was selected by re-docking with l-phenylalanine (L-Phe) and root-mean-square deviation (RMSD) value. MD simulation showed that the complex has a good stability, depicted by the low RMSD value, binding free energy and hydrogen bindings. Docking results showed that LjPAL6 has a high affinity toward l-Phe according to the low level of binding free energy. By overexpressing Ljpal6 in E. coli BL21, a total of 33.5 mg/l of protein was obtained, which has been increased to 83.7 mg/l via the optimization of LjPAL6 production using response surface methodology. The optimal pH and temperature were 8.5 and 50 °C, respectively. LjPAL6 showed a specific activity of 42 nkat/mg protein, with Km, Kcat and Kcat/Km values of 0.483 mM, 7 S-1 and 14.5 S-1 mM-1 for l-phe, respectively. In conclusion, finding models with the most reasonable stereo-chemical quality and lowest numbers of steric clashes would result in easier folding. Hence, in silico analyses of bulk data from natural origin will lead one to find an optimal model for in vitro studies and drug design.


Asunto(s)
Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/química , Simulación por Computador , Bases de Datos de Compuestos Químicos , Estabilidad de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Cinética , Lotus/enzimología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Temperatura , Termodinámica
13.
Toxicol Appl Pharmacol ; 346: 9-18, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29574210

RESUMEN

Side effects of methotrexate (MTX) especially hepatotoxicity limits clinical applications of this anticancer agent. Carboxypeptidase G2 (CPG2) is administrated for the treatment of elevated plasma concentrations of MTX. In this study, we have investigated the intracellular delivery of CPG2 fused to the transactivator transduction domain (TAT) and its protective effects against MTX-induced cell death of HepG2 cells. We have observed that both native and denatured forms of the enzyme transduced into the HepG2 cells efficiently in a concentration and time-dependent manner. The denatured protein transduced with higher efficiency than the native form and was functional inside the cells. MTX exposure significantly decreased HepG2 cell viability in a dose- and time-dependent manner. The cell viability after 24 and 48 h of incubation with 100 µM MTX was reduced to 44.37% and 17.69%, respectively. In cells pretreated with native and denatured TAT-CPG2 protein the cell viability was 98.63% and 86.31% after 24 and 48 h, respectively. Treatment with MTX increased the number of apoptotic HepG2 cells to 90.23% after 48 h. However, the apoptosis percentage in cells pretreated with native and denatured TAT-CPG2 was 21.49% and 22.28%, respectively. Our results showed that TAT-CPG2 significantly prevents MTX-induced oxidative stress by decreasing the formation of ROS and increasing the content of glutathione (GSH) and catalase activity. Our finding indicates that both native and denatured TAT-CPG2 strongly protect HepG2 cells against MTX-induced oxidative stress and apoptosis. Hence, intracellular delivery of CPG2 might provide a new therapeutic strategy for protecting against MTX mediated cytotoxicity.


Asunto(s)
Muerte Celular/efectos de los fármacos , Metotrexato/efectos adversos , Sustancias Protectoras/farmacología , Transactivadores/farmacología , gamma-Glutamil Hidrolasa/farmacología , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Línea Celular Tumoral , Glutatión/metabolismo , Células Hep G2 , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...