Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Pharmaceuticals (Basel) ; 17(10)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39458934

RESUMEN

BACKGROUND/OBJECTIVES: Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social interaction difficulties, repetitive behaviors, and immune dysregulation with elevated pro-inflammatory markers. Autophagic deficiency also contributes to social behavior deficits in ASD. Histamine H3 receptor (H3R) antagonism is a potential treatment strategy for brain disorders with features overlapping ASD, such as schizophrenia and Alzheimer's disease. METHODS: This study investigated the effects of sub-chronic systemic treatment with the H3R antagonist E159 on social deficits, repetitive behaviors, neuroinflammation, and autophagic disruption in male BTBR mice. RESULTS: E159 (2.5, 5, and 10 mg/kg, i.p.) improved stereotypic repetitive behavior by reducing self-grooming time and enhancing spontaneous alternation in addition to attenuating social deficits. It also decreased pro-inflammatory cytokines in the cerebellum and hippocampus of treated BTBR mice. In BTBR mice, reduced expression of autophagy-related proteins LC3A/B and Beclin 1 was observed, which was elevated following treatment with E159, attenuating the disruption in autophagy. The co-administration with the H3R agonist MHA (10 mg/kg, i.p.) reversed these effects, highlighting the role of histaminergic neurotransmission in observed behavioral improvements. CONCLUSIONS: These preliminary findings suggest the therapeutic potential of H3R antagonists in targeting neuroinflammation and autophagic disruption to improve ASD-like behaviors.

2.
Life (Basel) ; 14(10)2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39459534

RESUMEN

Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.

3.
Int J Biochem Cell Biol ; 174: 106634, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094731

RESUMEN

Postmortem studies have revealed that brains of individuals with autism spectrum disorder (ASD) exhibit abnormalities in various components of the cholinergic system including cholinergic receptors, projections, and nuclei. Deletions in the 15q13.3 region which encompasses CHRNA7, the gene that encodes the α7-nACh receptor, have been linked to various neurodevelopmental disorders, including ASD. In addition, the involvement of α7-nACh receptors in biological phenomena known to play a role in the pathophysiology of ASD such as cognitive functions, learning, memory, neuroinflammation, and oxidative stress, as well as the excitation-inhibition balance in neuronal circuits and maternal immune activation have been reported in previous studies. Furthermore, evolving preclinical and clinical literature supports the potential therapeutic benefits of using selectively acting cholinergic compounds, particularly those targeting the α7-nACh receptor subtype, in the treatment of ASD. This study reviews the previous literature on the involvement of nACh receptors in the pathophysiology of ASD and focuses on the α7-nACh receptor as a potential therapeutic target.


Asunto(s)
Trastorno del Espectro Autista , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Humanos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/patología
4.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39065682

RESUMEN

Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3ß pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.

5.
J Pharmacol Exp Ther ; 391(2): 241-257, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-38955492

RESUMEN

Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of ß-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor ß (TGF-ß)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2ß and TGF-ß/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas , Fibrosis , Productos Finales de Glicación Avanzada , Inflamasomas , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada , Receptor Cannabinoide CB2 , Animales , Masculino , Ratones , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Productos Finales de Glicación Avanzada/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/agonistas , Transducción de Señal/efectos de los fármacos
6.
Front Pharmacol ; 15: 1364353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903994

RESUMEN

Introduction: Brain histamine is considered an endogenous anticonvulsant and histamine H1 receptor. H1R antagonists have, in earlier studies, been found to induce convulsions. Moreover, research during the last two decades has provided more information concerning the anticonvulsant activities of histamine H3R (H3R) antagonists investigated in a variety of animal epilepsy models. Methods: Therefore, the in vivo anticonvulsant effect of the H3R antagonist DL76, with proven high in vitro affinity, in vitro selectivity profile, and high in vivo antagonist potency in mice against maximal electroshock (MES)-induced seizures in mice, was assessed. Valproic acid (VPA) was used as a reference antiepileptic drug (AED). In addition, DL76 was tested for its reproductive and fetal toxicity in the same animal species. Results and discussion: Our observations showed that acute systemic administration (intraperitoneal; i.p.) of DL76 (7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg, i.p.) provided significant and dose-dependent protection against MES-induced seizures in female and male mice. Moreover, the DL76-provided protective effects were comparable to those offered by the VPA and were reversed when animals were co-administered the CNS-penetrant selective H3R agonist R-(α)-methylhistamine (RAM, 10 mg/kg, i.p.). Furthermore, the administration of single (7.5 mg/kg, 15 mg/kg, 30 mg/kg, or 60 mg/kg, i.p.) or multiple doses (3 × 15 mg/kg, i.p.) of H3R antagonist DL76 on gestation days (GD) 8 or 13 failed to affect the maternal body weight of mice when compared with the control mice group. No significant alterations were detected in the average number of implantations and resorptions between the control and DL76-treated groups at the early stages of gestation and the organogenesis period. In addition, no significant differences in the occurrence of skeletal abnormalities, urogenital abnormalities, exencephaly, exomphalos, facial clefts, and caudal malformations were observed. The only significant abnormalities witnessed in the treated groups of mice were in the length of long bones and body length. In conclusion, the novel H3R antagonist DL76 protected test animals against MES-induced seizures and had a low incidence of reproductive and fetal malformation with decreased long bone lengths in vivo, signifying the potential therapeutic value of H3R antagonist DL76 for future preclinical as well as clinical development for use in the management of epilepsy.

7.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675442

RESUMEN

Studying the involvement of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in neuropsychiatric brain disorders such as autism spectrum disorder (ASD) has gained a growing interest. The flavonoid apigenin (APG) has been confirmed in its pharmacological action as a positive allosteric modulator of α7-nAChRs. However, there is no research describing the pharmacological potential of APG in ASD. The aim of this study was to evaluate the effects of the subchronic systemic treatment of APG (10-30 mg/kg) on ASD-like repetitive and compulsive-like behaviors and oxidative stress status in the hippocampus and cerebellum in BTBR mice, utilizing the reference drug aripiprazole (ARP, 1 mg/kg, i.p.). BTBR mice pretreated with APG (20 mg/kg) or ARP (1 mg/g, i.p.) displayed significant improvements in the marble-burying test (MBT), cotton-shredding test (CST), and self-grooming test (SGT) (all p < 0.05). However, a lower dose of APG (10 mg/kg, i.p.) failed to modulate behaviors in the MBT or SGT, but significantly attenuated the increased shredding behaviors in the CST of tested mice. Moreover, APG (10-30 mg/kg, i.p.) and ARP (1 mg/kg) moderated the disturbed levels of oxidative stress by mitigating the levels of catalase (CAT) and superoxide dismutase (SOD) in the hippocampus and cerebellum of treated BTBR mice. In patch clamp studies in hippocampal slices, the potency of choline (a selective agonist of α7-nAChRs) in activating fast inward currents was significantly potentiated following incubation with APG. Moreover, APG markedly potentiated the choline-induced enhancement of spontaneous inhibitory postsynaptic currents. The observed results propose the potential therapeutic use of APG in the management of ASD. However, further preclinical investigations in additional models and different rodent species are still needed to confirm the potential relevance of the therapeutic use of APG in ASD.

8.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628900

RESUMEN

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Asunto(s)
Enfermedad de Alzheimer , Antagonistas de los Receptores Histamínicos H3 , Animales , Ratones , Ratones Endogámicos C57BL , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas , Maleato de Dizocilpina , Antagonistas de los Receptores Histamínicos H3/farmacología , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasa , Serina-Treonina Quinasas TOR , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Transducción de Señal , Cognición
9.
ACS Pharmacol Transl Sci ; 6(8): 1129-1142, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588762

RESUMEN

Diabetes mellitus (DM) and its associated complications are considered one of the major health risks globally. Among numerous complications, diabetic cardiomyopathy (DCM) is characterized by increased accumulation of lipids and reduced glucose utilization following abnormal lipid metabolism in the myocardium along with oxidative stress, myocardial fibrosis, and inflammation that eventually result in cardiac dysfunction. The abnormal metabolism of lipids plays a fundamental role in cardiac lipotoxicity following the occurrence and development of DCM. Recently, it has been revealed that cannabinoid type-2 (CB2) receptors, an essential component of the endocannabinoid system, play a crucial role in the pathogenesis of obesity, hyperlipidemia, and DM. Provided the role of CB2R in regulating the glucolipid metabolic dysfunction and its antioxidant as well as anti-inflammatory activities, we carried out the current study to investigate the protective effects of a selective CB2R agonist, ß-caryophyllene (BCP), a natural dietary cannabinoid in the murine model of DCM and elucidated the underlying pharmacological and molecular mechanisms. Mice were fed a high-fat diet for 4 weeks followed by a single intraperitoneal injection of streptozotocin (100 mg/kg) to induce the model of DCM. BCP (50 mg/kg body weight) was given orally for 12 weeks. AM630, a CB2R antagonist, was given 30 min before BCP treatment to demonstrate the CB2R-dependent mechanism of BCP. DCM mice exhibited hyperglycemia, increased serum lactate dehydrogenase, impaired cardiac function, and hypertrophy. In addition, DCM mice showed alternations in serum lipids and increased oxidative stress concomitant to reduced antioxidant defenses and enhanced cardiac lipid accumulation in the diabetic heart. DCM mice also exhibited activation of TLR4/NF-κB/MAPK signaling and triggered the production of inflammatory cytokines and inflammatory enzyme mediators. However, treatment with BCP exerted remarkable protective effects by favorable modulation of the biochemical and molecular parameters, which were altered in DCM mice. Interestingly, pretreatment with AM630 abrogated the protective effects of BCP in DCM mice. Taken together, the findings of the present study demonstrate that BCP possesses the capability to mitigate the progression of DCM by inhibition of lipotoxicity-mediated cardiac oxidative stress and inflammation and favorable modulation of TLR4/NF-κB/MAPK signaling pathways mediating the CB2R-dependent mechanism.

10.
Pharmaceuticals (Basel) ; 16(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242552

RESUMEN

Based on their proven anti-inflammatory and antioxidant effects, recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental disorders such as autism spectrum disorder (ASD). Therefore, the aim of this study is to assess the effects of subchronic systemic treatment with intraperitoneal (i.p.) canagliflozin (20, 50, and 100 mg/kg) compared to aripiprazole (ARP) (3 mg/g, i.p.) in a valproic acid (VPA)-induced rat model of autism. The behavioral characteristics of ASD, oxidative stress, and acetylcholinesterase (AChE) activity in rats with ASD-like behaviors, which were induced by prenatal exposure to VPA, were evaluated. The behavioral assessment methods used for this study were the open field test (OFT), the marble-burying test (MBT), and the nestlet-shredding test (NST) to examine their exploratory, anxiety, and compulsiveness-like actions, while the biochemical assessment used for this study was an ELISA colorimetric assay to measure ASD biomarker activity in the hippocampus, prefrontal cortex, and cerebellum. Rats that were pretreated with 100 mg/kg of canagliflozin displayed a significantly lower percentage of shredding (1.12 ± 0.6%, p < 0.01) compared to the ARP group (3.52 ± 1.6%). Pretreatment with (20 mg/kg, 50 mg/kg, and 100 mg/kg) canagliflozin reversed anxiety levels and hyperactivity and reduced hyper-locomotor activity significantly (161 ± 34.9 s, p < 0.05; 154 ± 44.7 s, p < 0.05; 147 ± 33.6 s, p < 0.05) when compared with the VPA group (303 ± 140 s). Moreover, canagliflozin and ARP mitigated oxidative stress status by restoring levels of glutathione (GSH) and catalase (CAT) and increasing the levels of malondialdehyde (MDA) in all tested brain regions. The observed results propose repurposing of canagliflozin in the therapeutic management of ASD. However, further investigations are still required to verify the clinical relevance of canagliflozin in ASD.

11.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838876

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
12.
Nutrients ; 15(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36678254

RESUMEN

Apigenin is a naturally occurring dietary flavonoid found abundantly in fruits and vegetables. It possesses a wide range of biological properties that exert antioxidant, anti-inflammatory, anticancer, and antibacterial effects. These effects have been reported to be beneficial in the treatment of atherosclerosis, stroke, hypertension, ischemia/reperfusion-induced myocardial injury, and diabetic cardiomyopathy, and provide protection against drug-induced cardiotoxicity. These potential therapeutic effects advocate the exploration of the cardioprotective actions of apigenin. This review focuses on apigenin, and the possible pharmacological mechanisms involved in the protection against cardiovascular diseases. We further discuss its therapeutic uses and highlight its potential applications in the treatment of various cardiovascular disorders. Apigenin displays encouraging results, which may have implications in the development of novel strategies for the treatment of cardiovascular diseases. With the commercial availability of apigenin as a dietary supplement, the outcomes of preclinical studies may provide the investigational basis for future translational strategies evaluating the potential of apigenin in the treatment of cardiovascular disorders. Further preclinical and clinical investigations are required to characterize the safety and efficacy of apigenin and establish it as a nutraceutical as well as a therapeutic agent to be used alone or as an adjuvant with current drugs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Apigenina/farmacología , Apigenina/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
13.
F1000Res ; 12: 1325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38596002

RESUMEN

Background: Enteric coating films in acidic labile tablets protect the drug molecule from the acidic environment of the stomach. However, variations in the excipients used in the coating formulation may affect their ability to provide adequate protection. This study is the first to investigate the potential effects of coating materials on the protective functionality of enteric coating films for pantoprazole (PNZ) generic tablets after their recall from the market. Methods: A comparative analysis was conducted between generic and branded PNZ products, using pure drug powder for identification. The in vitro release of the drug was evaluated in different pH media. The study also utilized various analytical and thermal techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and confocal Raman microscopy. Results: The in vitro assessment results revealed significant variations in the release profile for the generic product in acidic media at 120 min. DSC and TGA thermal profile analyses showed slight variation between the two products. XRD analysis exhibited a noticeable difference in peak intensity for the generic sample, while SEM revealed smaller particle sizes in the generic product. The obtained spectra profile for the generic product displayed significant variation in peaks and band intensity, possibly due to impurities. These findings suggest that the excipients used in the enteric coating film of the generic product may have affected its protective functionality, leading to premature drug release in acidic media. Additionally, the presence of polysorbate 80 (P-80) in the brand product might improve the properties of the enteric coating film due to its multi-functionality. Conclusions: In conclusion, the excipients used in the brand product demonstrated superior functionality in effectively protecting the drug molecule from acidic media through the enteric coating film, as compared to the generic version.


Asunto(s)
Excipientes , Estómago , Pantoprazol , Liberación de Fármacos , Excipientes/química , Solubilidad , Comprimidos
14.
Molecules ; 27(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36364000

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-ß), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).


Asunto(s)
Enfermedad de Alzheimer , Trastorno del Espectro Autista , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Ratones , Animales , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Trastorno del Espectro Autista/tratamiento farmacológico , Antioxidantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Biomarcadores , Enfermedad de Alzheimer/tratamiento farmacológico , Hipoglucemiantes/farmacología
15.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36015079

RESUMEN

Altered regulation of neurotransmitters may lead to many pathophysiological changes in brain disorders including autism spectrum disorder (ASD). Given the fact that there are no FDA-approved effective treatments for the social deficits in ASD, the present study determined the effects of chronic systemic treatment of the novel multiple-active H3R/D2R/D3R receptor antagonist ST-2223 on ASD-related social deficits in a male Black and Tan Brachyury (BTBR) mice. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly and dose-dependently mitigated social deficits and disturbed anxiety levels of BTBR mice (p < 0.05) in comparison to the effects of aripiprazole (1 mg/kg, i.p.). Moreover, levels of monoaminergic neurotransmitters quantified by LC-MS/MS in four brain regions including the prefrontal cortex, cerebellum, striatum, and hippocampus unveiled significant elevation of histamine (HA) in the cerebellum and striatum; dopamine (DA) in the prefrontal cortex and striatum; as well as acetylcholine (ACh) in the prefrontal cortex, striatum, and hippocampus following ST-2223 (5 mg/kg) administration (all p < 0.05). These in vivo findings demonstrate the mitigating effects of a multiple-active H3R/D2R/D3R antagonist on social deficits of assessed BTBR mice, signifying its pharmacological potential to rescue core ASD-related behaviors and altered monoaminergic neurotransmitters. Further studies on neurochemical alterations in ASD are crucial to elucidate the early neurodevelopmental variations behind the core symptoms and heterogeneity of ASD, leading to new approaches for the future therapeutic management of ASD.

16.
Front Pharmacol ; 13: 861094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721194

RESUMEN

A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.

17.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631325

RESUMEN

Dimethyl fumarate (DMF) is a small molecule that has been shown to assert potent in vivo immunoregulatory and anti-inflammatory therapeutic actions. The drug has been approved and is currently in use for treating multiple sclerosis and psoriasis in the USA and Europe. Since inflammatory reactions have been significantly implicated in the etiology and progression of diverse disease states, the pharmacological actions of DMF are presently being explored and generalized to other diseases where inflammation needs to be suppressed and immunoregulation is desirable, either as a monotherapeutic agent or as an adjuvant. In this review, we focus on DMF, and present an overview of its mechanism of action while briefly discussing its pharmacokinetic profile. We further discuss in detail its pharmacological uses and highlight its potential applications in the treatment of cardiovascular diseases. DMF, with its unique combination of anti-inflammatory and vasculoprotective effects, has the potential to be repurposed as a therapeutic agent in patients with atherosclerotic cardiovascular disease. The clinical studies mentioned in this review with respect to the beneficial effects of DMF in atherosclerosis involve observations in patients with multiple sclerosis and psoriasis in small cohorts and for short durations. The findings of these studies need to be assessed in larger prospective clinical trials, ideally with a double-blind randomized study design, investigating the effects on cardiovascular endpoints as well as morbidity and mortality. The long-term impact of DMF therapy on cardiovascular diseases also needs to be confirmed.

18.
Pharmaceuticals (Basel) ; 15(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631438

RESUMEN

Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.

19.
Biomolecules ; 12(5)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35625611

RESUMEN

The therapy of depression is challenging and still unsatisfactory despite the presence of many antidepressant drugs on the market. Consequently, there is a continuous need to search for new, safer, and more effective antidepressant therapeutics. Previous studies have suggested a potential association of brain histaminergic/serotoninergic signaling and antidepressant- and anxiolytic-like effects. Here, we evaluated the in vivo antidepressant- and anxiolytic-like effects of the newly developed multiple-active ligand ST-2300. ST-2300 was developed from 5-HT2A/2C inverse agonist pimavanserin (PIM, ACP-103) and incorporates a histamine H3 receptor (H3R) antagonist pharmacophore. Despite its parent compound, ST-2300 showed only moderate serotonin 5-HT2A antagonist/inverse agonist affinity (Ki value of 1302 nM), but excellent H3R affinity (Ki value of 14 nM). In vivo effects were examined using forced swim test (FST), tail suspension test (TST), and the open field test (OFT) in C57BL/6 mice. Unlike PIM, ST-2300 significantly increased the anxiolytic-like effects in OFT without altering general motor activity. In FST and TST, ST-2300 was able to reduce immobility time similar to fluoxetine (FLX), a recognized antidepressant drug. Importantly, pretreatment with the CNS-penetrant H3R agonist (R)-α-methylhistamine reversed the antidepressant-like effects of ST-2300 in FST and TST, but failed to reverse the ST-2300-provided anxiolytic effects in OFT. Present findings reveal critical structural features that are useful in a rational multiple-pharmacological approach to target H3R/5-HT2A/5-HT2C.


Asunto(s)
Ansiolíticos , Antidepresivos , Piperidinas , Urea , Animales , Ansiolíticos/farmacología , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Histamina , Antagonistas de los Receptores Histamínicos , Ratones , Ratones Endogámicos C57BL , Piperidinas/farmacología , Receptores Histamínicos , Serotonina , Antagonistas de la Serotonina , Urea/análogos & derivados , Urea/farmacología
20.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613969

RESUMEN

Dysregulation in brain neurotransmitters underlies several neuropsychiatric disorders, e.g., autism spectrum disorder (ASD). Also, abnormalities in the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway pave the way for neuroinflammation, neurodegeneration, and altered learning phenotype in ASD. Therefore, the effects of chronic systemic administration of the multiple-targeting antagonist ST-713 at the histamine H3 receptor (H3R) and dopamine D2/D3 receptors (D2/D3R) on repetitive self-grooming, aggressive behaviors, and abnormalities in the MAPK pathway in BTBR T + Itpr3tf/J (BTBR) mice were assessed. The results showed that ST-713 (2.5, 5, and 10 mg/kg, i.p.) mitigated repetitive self-grooming and aggression in BTBR mice (all p < 0.05), and the ameliorative effects of the most promising dose of ST-713 (5 mg/kg, i.p.) on behaviors were completely abrogated by co-administration of the H3R agonist (R)-α-methylhistamine or the anticholinergic drug scopolamine. Moreover, the elevated levels of several MAPK pathway proteins and induced proinflammatory markers such as tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were significantly suppressed following chronic administration of ST-713 (5 mg/kg, i.p.) (all p < 0.01). Furthermore, ST-713 significantly increased the levels of histamine and dopamine in hippocampal tissue of treated BTBR mice (all p < 0.01). The current observations signify the potential role of such multiple-targeting compounds, e.g., ST-713, in multifactorial neurodevelopmental disorders such as ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Receptores Histamínicos H3 , Ratones , Animales , Trastorno Autístico/genética , Trastorno del Espectro Autista/tratamiento farmacológico , Receptores Histamínicos H3/metabolismo , Aseo Animal , Dopamina/farmacología , Ratones Endogámicos C57BL , Ratones Endogámicos , Quinasas MAP Reguladas por Señal Extracelular , Agresión , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...