Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(22): 23020-23031, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37934119

RESUMEN

This work addresses the challenge of delivering bioactive molecules by designing biocompatible nanogel particles (NGPs) utilizing rationally modified nature-sourced building blocks: capryl-oligochitosan and oxidized inosine. Capryl substituents endowed the resultant NGPs with membrane-penetration capabilities, while purine-containing inosine allowed H-bond/π-π/π-cation interactions. The prepared NGPs were complexed with carboxyfluorescein-labeled single-stranded oligonucleotide (FAM-oligo) and DsRed-encoding plasmid DNA. The successful delivery of FAM-oligo to the cell cytoplasm of the Nicotiana benthamiana plant was observed. Alexa 555-labeled bovine serum albumin (Alexa 555-BSA) was also efficiently encapsulated and delivered to the plant. In addition to delivering FAM-oligo and Alexa 555-BSA separately, NGPs also successfully co-delivered both biomolecules to the plant. Finally, NGPs successfully encapsulated the drug amphotericin B and reduced its toxicity while maintaining its efficacy. The presented findings suggest that NGPs may become a promising platform for the advanced delivery of bioactive molecules in various applications.


Asunto(s)
Nucleósidos , Oligosacáridos , Nanogeles , Inosina , Albúmina Sérica Bovina , Sistemas de Liberación de Medicamentos
2.
Microbiol Spectr ; 11(4): e0433922, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358460

RESUMEN

Aspergillus flavus is a mycotoxigenic fungus that contaminates many important agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound. This fungus is also the second leading cause of human invasive aspergillosis, after Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised individuals. Azole drugs are considered the most effective compounds in controlling Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance in Aspergillus spp. is typically associated with point mutations in cyp51 orthologs that encode lanosterol 14α-demethylase, a component of the ergosterol biosynthesis pathway that is also the target of azoles. We hypothesized that alternative molecular mechanisms are also responsible for acquisition of azole resistance in filamentous fungi. We found that an aflatoxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC through whole or segmental aneuploidy of specific chromosomes. We confirm a complete duplication of chromosome 8 in two sequentially isolated clones and a segmental duplication of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was evidenced by the ability of voriconazole-resistant clones to revert to their original level of azole susceptibility following repeated transfers on drug-free media. This study provides new insights into mechanisms of azole resistance in a filamentous fungus. IMPORTANCE Fungal pathogens cause human disease and threaten global food security by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with high rates of mortality in immunocompromised individuals. Additionally, this fungus contaminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the drug of choice to treat infections caused by Aspergillus spp. Although azole resistance mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneuploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents a paradigm shift, as this type of resistance was previously thought to occur only in yeasts. This observation provides the first experimental evidence of aneuploidy-mediated azole resistance in the filamentous fungus A. flavus.


Asunto(s)
Aneuploidia , Antifúngicos , Aspergillus flavus , Farmacorresistencia Fúngica , Voriconazol , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Voriconazol/farmacología , Dosificación de Gen , Cromosomas Fúngicos , Antifúngicos/farmacología
3.
Toxicol Rep ; 9: 1557-1565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936058

RESUMEN

A study was conducted on six animal feed centers in Israel where fungal and mycotoxin presence was examined in maize and wheat silages. Fumonisin mycotoxins FB1 and FB2 were present in every maize silage sample analyzed. Interestingly, no correlation was found between the occurrence of specific mycotoxins and the presence of the fungal species that might produce them in maize and wheat silages. We further investigated the effect of pomegranate peel extract (PPE) on Fusarium infection and fumonisin biosynthesis in laboratory-prepared maize silage. PPE had an inhibitory effect on FB1 and FB2 biosynthesis by Fusarium proliferatum, which resulted in up to 90 % reduction of fumonisin production in silage samples compared to untreated controls. This finding was supported by qRT-PCR analysis, showing downregulation of key genes involved in the fumonisin-biosynthesis pathway under PPE treatment. Our results present promising new options for the use of natural compounds that may help reduce fungal and mycotoxin contamination in agricultural foodstuff, and potentially replace traditionally used synthetic chemicals.

4.
J Fungi (Basel) ; 7(9)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34575819

RESUMEN

Wheat grains are colonized by complex microbial communities that have the potential to affect seed quality and susceptibility to disease. Some of the beneficial microbes in these communities have been shown to protect plants against pathogens through antagonism. We evaluated the role of the microbiome in seed health: in particular, against mycotoxin-producing fungi. Amplicon sequencing was used to characterize the seed microbiome and determine if epiphytes and endophytes differ in their fungal and bacterial diversity and community composition. We then isolated culturable fungal and bacterial species and evaluated their antagonistic activity against mycotoxigenic fungi. The most prevalent taxa were found to be shared between the epiphytic and endophytic microbiota of stored wheat seeds. Among the isolated bacteria, Bacillus strains exhibited strong antagonistic properties against fungal pathogens with noteworthy fungal load reduction in wheat grain samples of up to a 3.59 log10 CFU/g compared to untreated controls. We also found that a strain of the yeast, Rhodotorula glutinis, isolated from wheat grains, degrades and/or metabolizes aflatoxin B1, one of the most dangerous mycotoxins that negatively affects physiological processes in animals and humans. The mycotoxin level in grain samples was significantly reduced up to 65% in the presence of the yeast strain, compared to the untreated control. Our study demonstrates that stored wheat grains are a rich source of bacterial and yeast antagonists with strong inhibitory and biodegradation potential against mycotoxigenic fungi and the mycotoxins they produce, respectively. Utilization of these antagonistic microorganisms may help reduce fungal and mycotoxin contamination, and potentially replace traditionally used synthetic chemicals.

5.
Molecules ; 26(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34361698

RESUMEN

Patulin (PAT) and citrinin (CTN) are the most common mycotoxins produced by Penicillium and Aspergillus species and are often associated with fruits and fruit by-products. Hence, simple and reliable methods for monitoring these toxins in foodstuffs are required for regular quality assessment. In this study, we aimed to establish a cost-effective method for detection and quantification of PAT and CTN in pome fruits, such as apples and pears, using high-performance liquid chromatography (HPLC) coupled with spectroscopic detectors without the need for any clean-up steps. The method showed good performance in the analysis of these mycotoxins in apple and pear fruit samples with recovery ranges of 55-97% for PAT and 84-101% for CTN, respectively. The limits of detection (LOD) of PAT and CTN in fruits were 0.006 µg/g and 0.001 µg/g, while their limits of quantification (LOQ) were 0.018 µg/g and 0.003 µg/g, respectively. The present findings indicate that the newly developed HPLC method provides rapid and accurate detection of PAT and CTN in fruits.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Citrinina/análisis , Contaminación de Alimentos/análisis , Frutas/química , Malus/química , Patulina/análisis , Pyrus/química , Aspergillus/metabolismo , Cromatografía Líquida de Alta Presión/economía , Análisis Costo-Beneficio , Exactitud de los Datos , Calidad de los Alimentos , Límite de Detección , Penicillium/metabolismo , Factores de Tiempo
6.
Mol Plant Pathol ; 22(1): 117-129, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33169928

RESUMEN

Aspergillus carbonarius is the major producer of ochratoxin A (OTA) among Aspergillus species, but the contribution of this secondary metabolite to fungal virulence has not been assessed. We characterized the functions and addressed the roles of three factors in the regulation of OTA synthesis and pathogenicity in A. carbonarius: LaeA, a transcriptional factor regulating the production of secondary metabolites; polyketide synthase, required for OTA biosynthesis; and glucose oxidase (GOX), regulating gluconic acid (GLA) accumulation and acidification of the host tissue during fungal growth. Deletion of laeA in A. carbonarius resulted in significantly reduced OTA production in colonized nectarines and grapes. The ∆laeA mutant was unable to efficiently acidify the colonized tissue, as a direct result of diminished GLA production, leading to attenuated virulence in infected fruit compared to the wild type (WT). The designed Acpks-knockout mutant resulted in complete inhibition of OTA production in vitro and in colonized fruit. Interestingly, physiological analysis revealed that the colonization pattern of the ∆Acpks mutant was similar to that of the WT strain, with high production of GLA in the colonized tissue, suggesting that OTA accumulation does not contribute to A. carbonarius pathogenicity. Disruption of the Acgox gene inactivated GLA production in A. carbonarius, and this mutant showed attenuated virulence in infected fruit compared to the WT strain. These data identify the global regulator LaeA and GOX as critical factors modulating A. carbonarius pathogenicity by controlling transcription of genes important for fungal secondary metabolism and infection.


Asunto(s)
Aspergillus/enzimología , Proteínas Fúngicas/metabolismo , Ocratoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Prunus persica/microbiología , Vitis/microbiología , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus/patogenicidad , Frutas/microbiología , Proteínas Fúngicas/genética , Glucosa Oxidasa/genética , Glucosa Oxidasa/metabolismo , Mutación , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Virulencia
7.
J Fungi (Basel) ; 7(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379151

RESUMEN

Aspergillus carbonarius is a strong and consistent ochratoxin A (OTA) producer and considered to be the main source of this toxic metabolite in grapes and grape products such as wine, grape juice and dried vine fruit. OTA is produced under certain growth conditions and its accumulation is affected by several environmental factors, such as growth phase, substrate, temperature, water activity and pH. In this study, we examined the impact of fruit host factors on regulation and accumulation of OTA in colonized grape berries, and assessed in vitro the impact of those factors on the transcriptional levels of the key genes and global regulators contributing to fungal colonization and mycotoxin synthesis. We found that limited sugar content, low pH levels and high malic acid concentrations activated OTA biosynthesis by A. carbonarius, both in synthetic media and during fruit colonization, through modulation of global regulator of secondary metabolism, laeA and OTA gene cluster expression. These findings indicate that fruit host factors may have a significant impact on the capability of A. carbonarius to produce and accumulate OTA in grapes.

8.
Front Microbiol ; 11: 210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117191

RESUMEN

Pathogenic fungi must respond effectively to changes in environmental pH for successful host colonization, virulence and toxin production. Aspergillus carbonarius is a mycotoxigenic pathogen with the ability to colonize many plant hosts and secrete ochratoxin A (OTA). In this study, we characterized the functions and addressed the role of PacC-mediated pH signaling in A. carbonarius pathogenicity using designed pacC gene knockout mutant. ΔAcpacC mutant displayed an acidity-mimicking phenotype, which resulted in impaired fungal growth at neutral/alkaline pH, accompanied by reduced sporulation and conidial germination compared to the wild type (WT) strain. The ΔAcpacC mutant was unable to efficiently acidify the growth media as a direct result of diminished gluconic and citric acid production. Furthermore, loss of AcpacC resulted in a complete inhibition of OTA production at pH 7.0. Additionally, ΔAcpacC mutant exhibited attenuated virulence compared to the WT toward grapes and nectarine fruits. Reintroduction of pacC gene into ΔAcpacC mutant restored the WT phenotype. Our results demonstrate important roles of PacC of A. carbonarius in OTA biosynthesis and in pathogenicity by controlling transcription of genes important for fungal secondary metabolism and infection.

9.
Front Microbiol ; 10: 1919, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481948

RESUMEN

Fungal plant pathogens cause considerable losses in yield and quality of field crops worldwide. In addition, under specific environmental conditions, many fungi, including such as some Fusarium and Aspergillus spp., are further able to produce mycotoxins while colonizing their host, which accumulate in human and animal tissues, posing a serious threat to consumer health. Extensive use of azole fungicides in crop protection stimulated the emergence of acquired azole resistance in some plant and human fungal pathogens. Combination treatments, which become popular in clinical practice, offer an alternative strategy for managing potentially resistant toxigenic fungi and reducing the required dosage of specific drugs. In the current study we tested the effect of pomegranate peel extract (PPE) on the growth and toxin production of the mycotoxigenic fungi Aspergillus flavus and Fusarium proliferatum, both alone and in combination with the azole fungicide prochloraz (PRZ). Using time-lapse microscopy and quantitative image analysis we demonstrate significant delay of conidial germination and hyphal elongation rate in both fungi following PPE treatment in combination with PRZ. Moreover, PPE treatment reduced aflatoxin production by A. flavus up to 97%, while a combined treatment with sub-inhibitory doses of PPE and PRZ resulted in complete inhibition of toxin production over a 72 h treatment. These findings were supported by qRT-PCR analysis, showing down-regulation of key genes involved in the aflatoxin biosynthetic pathway under combined PPE/PRZ treatment al low concentrations. Our results provide first evidence for synergistic effects between the commercial drug PRZ and natural compound PPE. Future application of these findings may allow to reduce the required dosage of PRZ, and possibly additional azole drugs, to inhibit mycotoxigenic fungi, ultimately reducing potential concerns over exposure to high doses of these potentially harmful fungicides.

10.
Microorganisms ; 7(9)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480316

RESUMEN

Capsicum peppers are among the most popular horticultural crops produced and consumed worldwide. This study aimed to assess the occurrence of spoilage fungi responsible for post-harvest losses in the most common varieties of Capsicum peppers collected from retail markets in Nigeria and Ghana. Forty fungal isolates belonging to 7 families, 8 genera, and 17 species were identified on the basis of morphology, culture characteristics, and DNA sequencing of the internal transcribed spacer (ITS) region. Aspergillus spp. (42.5%), Fusarium spp. (22.5%), and Colletotrichum spp. (15%) were found to be the predominant fungal pathogens. Furthermore, potential ability of the isolated mycotoxigenic fungi to produce some major mycotoxins was analyzed using high-performance liquid chromatography (HPLC). Among the 22 isolates analyzed, 11 strains belonging to the genera of Aspergillus, Fusarium, and Penicillium were found to be able to produce mycotoxins, such as aflatoxin B1, gliotoxin, deoxynivalenol, and citrinin. A better understanding of the role of fungal contaminants in pepper fruits, especially the prevalence of mycotoxigenic fungi and their associated mycotoxigenic potential, will assist in the development of management strategies to control mycotoxin contamination and to reduce toxicological risks related to pepper consumption by humans and animals.

11.
Toxins (Basel) ; 9(10)2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946706

RESUMEN

This study aimed to assess the occurrence of toxigenic fungi and mycotoxin contamination in stored wheat grains by using advanced molecular and analytical techniques. A multiplex polymerase chain reaction (PCR) strategy was established for rapid identification of mycotoxigenic fungi, and an improved analytical method was developed for simultaneous multi-mycotoxin determination in wheat grains by liquid chromatography-tandem mass spectrometry (LC/MS/MS) without the need for any clean-up. The optimized multiplex PCR method was highly specific in detecting fungal species containing species-specific and mycotoxin metabolic pathway genes. The method was applied for evaluation of 34 wheat grain samples collected from storage warehouses for the presence of mycotoxin-producing fungi, and a few samples were found positive for Fusarium and Aspergillus species. Further chemical analysis revealed that 17 samples contained mycotoxins above the level of detection, but only six samples were found to be contaminated over the EU regulatory limits with at least one mycotoxin. Aflatoxin B1, fumonisins, and deoxynivalenol were the most common toxins found in these samples. The results showed a strong correlation between the presence of mycotoxin biosynthesis genes as analyzed by multiplex PCR and mycotoxin detection by LC/MS/MS. The present findings indicate that a combined approach might provide rapid, accurate, and sensitive detection of mycotoxigenic species and mycotoxins in wheat grains.


Asunto(s)
Grano Comestible/microbiología , Contaminación de Alimentos/análisis , Hongos/aislamiento & purificación , Micotoxinas/análisis , Triticum/microbiología , Cromatografía Liquida , Hongos/clasificación , Reacción en Cadena de la Polimerasa , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA