Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1356426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894971

RESUMEN

Climate change is one of the main challenges, and it poses a tough challenge to the agriculture industry globally. Additionally, greenhouse gas (GHG) emissions are the main contributor to climate change; however, croplands are a prominent source of GHG emissions. Yet this complex challenge can be mitigated through climate-smart agricultural practices. Conservation tillage is commonly known to preserve soil and mitigate environmental change by reducing GHG emissions. Nonetheless, there is still a paucity of information on the influences of conservation tillage on wheat yield, soil properties, and GHG flux, particularly in the semi-arid Dingxi belt. Hence, in order to fill this gap, different tillage systems, namely conventional tillage (CT) control, straw incorporation with conventional tillage (CTS), no-tillage (NT), and stubble return with no-tillage (NTS), were laid at Dingxi, Gansu province of China, under a randomized complete block design with three replications to examine their impacts on yield, soil properties, and GHG fluxes. Results depicted that different conservative tillage systems (CTS, NTS, and NT) significantly (p < 0.05) increased the plant height, number of spikes per plant, seed number per meter square, root yield, aboveground biomass yield, thousand-grain weight, grain yield, and dry matter yield compared with CT. Moreover, these conservation tillage systems notably improved the soil properties (soil gravimetric water content, water-filled pore space, water storage, porosity, aggregates, saturated hydraulic conductivity, organic carbon, light fraction organic carbon, carbon storage, microbial biomass carbon, total nitrogen, available nitrogen storage, microbial biomass nitrogen, total phosphorous, available phosphorous, total potassium, available potassium, microbial counts, urease, alkaline phosphatase, invertase, cellulase, and catalase) while decreasing the soil temperature and bulk density over CT. However, CTS, NTS, and NT had non-significant effects on ECe, pH, and stoichiometric properties (C:N ratio, C:P ratio, and N:P ratio). Additionally, conservation-based tillage regimes NTS, NT, and CTS significantly (p < 0.05) reduced the emission and net global warming potential of greenhouse gases (carbon dioxide, methane, and nitrous oxide) by 23.44, 19.57, and 16.54%, respectively, and decreased the greenhouse gas intensity by 23.20, 29.96, and 18.72%, respectively, over CT. We conclude that NTS is the best approach to increasing yield, soil and water conservation, resilience, and mitigation of agroecosystem capacity.

2.
Sci Rep ; 12(1): 7066, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487963

RESUMEN

As one of the important greenhouse gas, nitrous oxide (N2O) has attracted much attention globally under climate change context. Agricultural practices are the main sources of greenhouse gas emissions. Nevertheless, scarcity of literature is available on the effects of different tillage measures on soil N2O emission under spring wheat (Triticum aestivum L.) ecosystem in the semi-arid area of the Loess Plateau. The main objective of the experimental study was to explore the influence of conservation tillage techniques on soil physicochemical properties, nitrous oxide emission and yield in the Northern semi-arid Dingxi region of China. Four treatments viz., conventional tillage (CT), no tillage (NT), straw mulch with conventional tillage (TS) and stubble-return with no-till (NTS) were evaluated under randomized complete block design with three replications. Our results depicted that compared with conventional tillage, bulk density and water content of topsoil was increased and soil pH value was reduced under conservation tillage techniques. Conservation tillage NT, TS and NTS increased organic carbon, TN, MBN and NH4+-N and reduced the accumulation of NO3-N. Additionally, although the N2O emission under NT, TS and NTS was 8.95, 41.90 and 21.05% respectively higher than under T treatment, the corresponding wheat yield was 15.40, 31.97 and 63.21% higher than T treatment. Moreover, correlation analysis showed that soil moisture and temperature were the most significant factors affecting soil N2O emission. The NTS treatment pointedly increased crop yield without significantly increasing soil N2O emission. Consequently, based on economic and environmental benefits and considering N2O emission and crop yield, we suggest that NTS technique is the best conservation tillage strategy in the semi-arid environmental zone of the Loess Plateau of Dingxi China.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Ecosistema , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Suelo/química , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA