Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7110, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402845

RESUMEN

Heparan sulfates are complex polysaccharides that mediate the interaction with a broad range of protein ligands at the cell surface. A key step in heparan sulfate biosynthesis is catalyzed by the bi-functional glycosyltransferases EXT1 and EXT2, which generate the glycan backbone consisting of repeating N-acetylglucosamine and glucuronic acid units. The molecular mechanism of heparan sulfate chain polymerization remains, however, unknown. Here, we present the cryo-electron microscopy structure of human EXT1-EXT2, which reveals the formation of a tightly packed hetero-dimeric complex harboring four glycosyltransferase domains. A combination of in vitro and in cellulo mutational studies is used to dissect the functional role of the four catalytic sites. While EXT1 can catalyze both glycosyltransferase reactions, our results indicate that EXT2 might only have N-acetylglucosamine transferase activity. Our findings provide mechanistic insight into heparan sulfate chain elongation as a nonprocessive process and lay the foundation for future studies on EXT1-EXT2 function in health and disease.


Asunto(s)
Heparitina Sulfato , N-Acetilglucosaminiltransferasas , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Microscopía por Crioelectrón , Heparitina Sulfato/metabolismo , Proteínas/metabolismo , Nucleotidiltransferasas , Glicosiltransferasas/metabolismo
2.
Anal Bioanal Chem ; 414(1): 551-559, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34258651

RESUMEN

Differential sensing of proteins based on cross-reactive arrays and pattern recognition is a promising technique for the detection and identification of proteins. In this study, a rational biomimetic strategy has been used to prepare sensing materials capable of discriminating structurally similar proteins, such as deletion and point mutants of a cytokine, by mimicking the biological properties of heparan sulfate (HS). Using the self-assembly of two disaccharides, lactose and sulfated lactose at various ratios on the surface of a chip, an array of combinatorial cross-reactive receptors has been prepared. Coupling with surface plasmon resonance imaging (SPRi), the obtained cross-reactive array is very efficient for protein sensing. It is able to detect HS binding proteins (HSbps) such as IFNγ at nanomolar concentrations. Moreover, such a system is capable of discriminating between IFNγ and its mutants with good selectivity.


Asunto(s)
Citocinas , Heparitina Sulfato , Biomimética , Disacáridos , Heparitina Sulfato/química , Resonancia por Plasmón de Superficie/métodos
3.
Methods Mol Biol ; 2303: 121-137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626375

RESUMEN

Heparan sulfate chains are complex and structurally diverse polysaccharides that interact with a large number of proteins, thereby regulating a vast array of biological functions. Understanding this activity requires obtaining oligosaccharides of defined structures. Here we describe methods for isolating, engineering, and characterizing heparan sulfate-derived oligosaccharides and approaches based on high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and bio-layer interferometry (BLI) to study their structures, modifications, and interactions.


Asunto(s)
Oligosacáridos/química , Cromatografía Líquida de Alta Presión , Heparitina Sulfato , Proteínas
4.
Molecules ; 25(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937952

RESUMEN

Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are "gagosylated" and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.


Asunto(s)
Aparato de Golgi/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Heparitina Sulfato/metabolismo , Animales , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilación , Proteoglicanos de Heparán Sulfato/química , Humanos , Mutación , Oligosacáridos/química , Biosíntesis de Proteínas , Dominios Proteicos , Procesamiento Proteico-Postraduccional
5.
Nat Commun ; 11(1): 1153, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123169

RESUMEN

Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti. Structures determined under various pH/redox conditions illuminate the role played by previously uncharacterized disulfide-bridge and domain-swapped interfaces from crystal formation in Bti to dissolution in the larval mosquito midgut. Biochemical, toxicological and biophysical methods enable the deconvolution of key steps in the Cyt1Aa bioactivation cascade. We additionally show that the size, shape, production yield, pH sensitivity and toxicity of Cyt1Aa crystals grown in Bti can be controlled by single atom substitution.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Disulfuros/química , Endotoxinas/genética , Endotoxinas/farmacología , Células HEK293 , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/metabolismo , Insecticidas/farmacología , Ratones , Microscopía de Fuerza Atómica , Células 3T3 NIH , Conformación Proteica , Células Sf9
6.
Biomaterials ; 127: 61-74, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28279922

RESUMEN

The SDF-1α chemokine (CXCL12) is a potent bioactive chemoattractant known to be involved in hematopoietic stem cell homing and cancer progression. The associated SDF-1α/CXCR4 receptor signaling is a hallmark of aggressive tumors, which can metastasize to distant sites such as lymph nodes, lung and bone. Here, we engineered a biomimetic tumoral niche made of a thin and soft polyelectrolyte film that can retain SDF-1α to present it, in a spatially-controlled manner, at the ventral side of the breast cancer cells. Matrix-bound SDF-1α but not soluble SDF-1α induced a striking increase in cell spreading and migration in a serum-containing medium, which was associated with the formation of lamellipodia and filopodia in MDA-MB231 cells and specifically mediated by CXCR4. Other Knockdown and inhibition experiments revealed that CD44, the major hyaluronan receptor, acted in concert, via a spatial coincidence, to drive a specific matrix-bound SDFα-induced cell response associated with ERK signaling. In contrast, the ß1 integrin adhesion receptor played only a minor role on cell polarity. The CXCR4/CD44 mediated cellular response to matrix-bound SDF-1α involved the Rac1 RhoGTPase and was sustained solely in the presence of matrix-bound SDFα, in contrast with the transient signaling observed in response to soluble SDF-1α. Our results highlight that a biomimetic tumoral niche enables to reveal potent cellular effects and so far hidden molecular mechanisms underlying the breast cancer response to chemokines. These results open new insights for the design of future innovative therapies in metastatic cancers, by inhibiting CXCR4-mediated signaling in the tumoral niche via dual targeting of receptors (CXCR4 and CD44) or of associated signaling molecules (CXCR4 and Rac1).


Asunto(s)
Materiales Biocompatibles/química , Neoplasias de la Mama/patología , Quimiocina CXCL12/farmacología , Sistemas de Liberación de Medicamentos , Receptor Cross-Talk , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Receptores de Hialuranos/metabolismo , Integrina beta1/metabolismo , Ratones , Invasividad Neoplásica , Fenotipo , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Receptores CXCR4/metabolismo , Proteína de Unión al GTP rac1/metabolismo
7.
Sci Signal ; 9(452): ra107, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803285

RESUMEN

Chemokines stimulate signals in cells by binding to G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors. These chemoattractant cytokines also interact with heparan sulfate (HS), which provides positional information within tissues in the form of haptotactic gradients along which cells can migrate directionally. To investigate the mechanism by which HS modulates chemokine functions, we used the CXC chemokine CXCL12, which exists in different isoforms that all signal through CXCR4 but have distinct HS-binding domains. In experiments with both cell-associated and solubilized CXCR4, we found that although CXCL12γ bound to CXCR4 with a higher affinity than did CXCL12α, CXCL12γ displayed reduced signaling and chemotactic activities. These properties were caused by the specific carboxyl-terminal region of CXCL12γ, which, by interacting with CXCR4 sulfotyrosines, mediated high-affinity, but nonproductive, binding to CXCR4. HS prevented CXCL12γ from interacting with the CXCR4 sulfotyrosines, thereby functionally presenting the chemokine to its receptor such that its activity was similar to that of CXCL12α. HS had no effects on the binding of CXCL12α to CXCR4 or its biological activity, suggesting that this polysaccharide controls CXCL12 in an isoform-specific manner. These data suggest that the HS-dependent regulation of chemokine functions extends beyond the simple process of immobilization and directly modulates receptor ligation and activation.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/metabolismo , Heparitina Sulfato/metabolismo , Receptores CXCR4/metabolismo , Linfocitos T/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Linfocitos T/citología
8.
Open Biol ; 5(8)2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26269427

RESUMEN

The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains--their local density, orientation, conformation and lateral mobility--and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.


Asunto(s)
Citocinas/metabolismo , Heparitina Sulfato/química , Péptidos y Proteínas de Señalización Intercelular/química , Quimiocina CXCL12/química , Quimiocina CXCL12/metabolismo , Citocinas/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Moleculares , Conformación Molecular , Unión Proteica
9.
Glycobiology ; 25(2): 151-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25335974

RESUMEN

Through its ability to interact with proteins, heparan sulfate (HS) fulfills a large variety of functions. Protein binding depends on the level of HS sulfation and epimerization which are cell specific and dynamically regulated. Characterization of this molecule, however, has been restricted to oligosaccharide fragments available in large amount for structural investigation or to sulfate distribution through compositional analysis. Here we developed a (1)H-(13)C 2D NMR-based approach, directly performed on HS isolated from (13)C-labeled cells. By integrating the peak volumes measured at different chemical shifts, this non-destructive analysis allows us to determine both the sulfation and the iduronic/glucuronic profiles of the polysaccharide. Applied to wild-type and N-deacetylase/N-sulfotransferase-deficient fibroblasts as well as to epithelial cells differentiation, it also gives insights into the functional relationships existing between HS biosynthetic enzymes. This approach should be of significant interest to better understand HS changes that occur through physiologic regulations or during pathological development.


Asunto(s)
Glucosa/metabolismo , Heparitina Sulfato/metabolismo , Animales , Células CACO-2 , Espectroscopía de Resonancia Magnética con Carbono-13 , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Marcaje Isotópico , Ratones , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
10.
Chem Commun (Camb) ; 50(96): 15148-51, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25338834

RESUMEN

We demonstrate the quartz crystal microbalance as a novel method to quantify the reaction yields and stability of the terminal conjugation of chemically complex molecules. Oxime ligation is identified as a facile, broadly applicable method for the reducing-end conjugation of glycosaminoglycans that overcomes the limited stability and yield of popular hydrazone ligation.


Asunto(s)
Glicosaminoglicanos/química , Heparitina Sulfato/química , Ácido Hialurónico/química , Hidrazonas/química , Oximas/química , Tecnicas de Microbalanza del Cristal de Cuarzo
11.
Biomaterials ; 35(32): 8903-15, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25088726

RESUMEN

Glycosaminoglycans (GAGs) are ubiquitously present at the cell surface and in extracellular matrix, and crucial for matrix assembly, cell-cell and cell-matrix interactions. The supramolecular presentation of GAG chains, along with other matrix components, is likely to be functionally important but remains challenging to control and to characterize, both in vivo and in vitro. We present a method to create well-defined biomimetic surfaces that display GAGs, either alone or together with other cell ligands, in a background that suppresses non-specific binding. Through the design of the immobilization platform - a streptavidin monolayer serves as a molecular breadboard for the attachment of various biotinylated ligands - and a set of surface-sensitive in situ analysis techniques (including quartz crystal microbalance and spectroscopic ellipsometry), the biomimetic surfaces are tailor made with tight control on biomolecular orientation, surface density and lateral mobility. Analysing the interactions between a selected GAG (heparan sulphate, HS) and the HS-binding chemokine CXCL12α (also called SDF-1α), we demonstrate that these surfaces are versatile for biomolecular and cellular interaction studies. T-lymphocytes are found to adhere specifically to surfaces presenting CXCL12α, both when reversibly bound through HS and when irreversibly immobilized on the inert surface, even in the absence of any bona fide cell adhesion ligand. Moreover, surfaces which present both HS-bound CXCL12α and the intercellular adhesion molecule 1 (ICAM-1) synergistically promote cell adhesion. Our surface biofunctionalization strategy should be broadly applicable for functional studies that require a well-defined supramolecular presentation of GAGs along with other matrix or cell-surface components.


Asunto(s)
Biomimética/métodos , Membrana Celular/química , Quimiocina CXCL12/química , Glicosaminoglicanos/química , Molécula 1 de Adhesión Intercelular/química , Biotinilación , Adhesión Celular , Matriz Extracelular/química , Fibronectinas/química , Heparitina Sulfato/química , Humanos , Células Jurkat , Ligandos , Modelos Moleculares , Unión Proteica , Proteínas Recombinantes/química , Albúmina Sérica Bovina/química , Estreptavidina/química , Resonancia por Plasmón de Superficie , Propiedades de Superficie , Linfocitos T/química
12.
Biomaterials ; 35(15): 4525-4535, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24612919

RESUMEN

Several chemokines are important in muscle myogenesis and in the recruitment of muscle precursors during muscle regeneration. Among these, the SDF-1α chemokine (CXCL12) is a potent chemoattractant known to be involved in muscle repair. SDF-1α was loaded in polyelectrolyte multilayer films made of poly(L-lysine) and hyaluronan to be delivered locally to myoblast cells in a matrix-bound manner. The adsorbed amounts of SDF-1α were tuned over a large range from 100 ng/cm(2) to 5 µg/cm(2), depending on the initial concentration of SDF-1α in solution, its pH, and on the film crosslinking extent. Matrix-bound SDF-1α induced a striking increase in myoblast spreading, which was revealed when it was delivered from weakly crosslinked films. It also significantly enhanced cell migration in a dose-dependent manner, which again depended on its presentation by the biopolymeric film. The low-crosslinked film was the most efficient in boosting cell migration. Furthermore, matrix-bound SDF-1α also increased the expression of myogenic markers but the fusion index decreased in a dose-dependent manner with the adsorbed amount of SDF-1α. At high adsorbed amounts of SDF-1α, a large number of Troponin T-positive cells had only one nucleus. Overall, this work reveals the importance of the presentation mode of SDF-1α to emphasize its effect on myogenic processes. These films may be further used to provide insight into the role of SDF-1α presented by a biomaterial in physiological or pathological processes.


Asunto(s)
Quimiocina CXCL12/administración & dosificación , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/química , Desarrollo de Músculos/efectos de los fármacos , Mioblastos/citología , Polilisina/química , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/farmacología , Ratones , Mioblastos/efectos de los fármacos
13.
PLoS One ; 9(1): e87394, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498095

RESUMEN

Chemokines are chemotactic cytokines comprised of 70-100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K(+) channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures.


Asunto(s)
Quimiocina CCL5/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Animales , Quimiocina CCL5/química , Quimiocina CCL5/genética , Quimiocina CXCL12/química , Quimiocina CXCL12/genética , Humanos , Unión Proteica , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores CCR5/química , Receptores CCR5/genética , Receptores CXCR4/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
14.
J Am Chem Soc ; 135(25): 9384-90, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23734709

RESUMEN

The extensive functional repertoire of heparin and heparan sulfate, which relies on their ability to interact with a large number of proteins, has recently emerged. To understand the forces that drive such interactions the binding of heparin to interferon-γ (IFNγ), used as a model system, was investigated. NMR-based titration experiments demonstrated the involvement of two adjacent cationic domains (D1: KTGKRKR and D2: RGRR), both of which are present within the carboxy-terminal sequence of the cytokine. Kinetic analysis showed that these two domains contribute differently to the interaction: D1 is required to form a complex and constitutes the actual binding site, whereas D2, although unable to associate with heparin by itself, increased the association rate of the binding. These data are consistent with the view that D2, through nonspecific electrostatic forces, places the two molecules in favorable orientations for productive binding within the encounter complex. This mechanism was supported by electrostatic potential analysis and thermodynamic investigations. They showed that D1 association to heparin is driven by both favorable enthalpic and entropic contributions, as expected for a binding sequence, but that D2 gives rise to entropic penalty, which opposes binding in a thermodynamic sense. The binding mechanism described herein, by which the D2 domain kinetically drives the interaction, has important functional consequences and gives a structural framework to better understand how specific are the interactions between proteins and heparin.


Asunto(s)
Aminoácidos/química , Heparitina Sulfato/química , Interferón gamma/química , Proteínas/química , Aminoácidos/genética , Sitios de Unión , Interferón gamma/genética , Mutación
15.
FASEB J ; 27(6): 2431-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23457216

RESUMEN

Sulfs are extracellular sulfatases that have emerged recently as critical regulators of heparan sulfate (HS) activities through their ability to catalyze specific 6-O-desulfation of the polysaccharide. Consequently, Sulfs have been involved in many physiological and pathological processes, and notably for Sulf-2, in the development of cancers with poor prognosis. Despite growing interest, little is known about the structure and activity of these enzymes and the way they induce dynamic remodeling of HS 6-O-sulfation status. Here, we have combined an array of analytical approaches, including mass spectrometry, NMR, HS oligosaccharide sequencing, and FACS, to dissect HSulf-2 sulfatase activity, either on a purified octasaccharide used as a mimic of HS functional domains, or on intact cell-surface HS chains. In parallel, we have studied the functional consequences of HSulf-2 activity on fibroblast growth factor (FGF)-induced mitogenesis and found that the enzyme could differentially regulate FGF1 and FGF2 activities. Notably, these data supported the existence of precise 6-O-sulfation patterns for FGF activation and provided new insights into the saccharide structures involved. Altogether, our data bring to light an original processive enzymatic mechanism, by which HSulfs catalyze oriented alteration of HS 6-O-desulfation patterns and direct fine and differential regulation of HS functions.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Sulfotransferasas/metabolismo , Catálisis , Línea Celular , Heparitina Sulfato/química , Humanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Sulfatasas , Sulfotransferasas/química
16.
J Immunol ; 184(9): 4982-9, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20351192

RESUMEN

Variants of the human C1 inhibitor serpin domain containing three N-linked carbohydrates at positions 216, 231, and 330 (C1inhDelta97), a single carbohydrate at position 330 (C1inhDelta97DM), or no carbohydrate were produced in a baculovirus/insect cells system. An N-terminally His-tagged C1inhDelta97 variant was also produced. Removal of the oligosaccharide at position 330 dramatically decreased expression, precluding further analysis. All other variants were characterized chemically and shown to inhibit C1s activity and C1 activation in the same way as native C1 inhibitor. Likewise, they formed covalent complexes with C1s as shown by SDS-PAGE analysis. C1 inhibitor and its variants inhibited the ability of C1r-like protease to activate C1s, but did not form covalent complexes with this protease. The interaction of C1 inhibitor and its variants with heparin was investigated by surface plasmon resonance, yielding K(D) values of 16.7 x 10(-8) M (C1 inhibitor), 2.3 x 10(-8) M (C1inhDelta97), and 3.6 x 10(-8) M (C1inhDelta97DM). C1s also bound to heparin, with lower affinity (K(D) = 108 x 10(-8) M). Using the same technique, 50% inhibition of the binding of C1 inhibitor and C1s to heparin was achieved using heparin oligomers containing eight and six saccharide units, respectively. These values roughly correlate with the size of 10 saccharide units yielding half-maximal potentiation of the inhibition of C1s activity by C1 inhibitor, consistent with a "sandwich" mechanism. Using a thermal shift assay, heparin was shown to interact with the C1s serine protease domain and the C1 inhibitor serpin domain, increasing and decreasing their thermal stability, respectively.


Asunto(s)
Proteína Inhibidora del Complemento C1/fisiología , Complemento C1/antagonistas & inhibidores , Complemento C1/metabolismo , Heparina/metabolismo , Serpinas/fisiología , Animales , Baculoviridae/genética , Unión Competitiva/genética , Unión Competitiva/inmunología , Carbohidratos/química , Carbohidratos/genética , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/metabolismo , Complemento C1s/antagonistas & inhibidores , Complemento C1s/metabolismo , Heparina/química , Humanos , Peso Molecular , Mariposas Nocturnas/genética , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Serpinas/genética , Serpinas/metabolismo , Spodoptera/genética , Porcinos
17.
PLoS One ; 3(7): e2543, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18648536

RESUMEN

The CXCL12gamma chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12gamma is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12gamma through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12gamma both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12gamma strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12gamma one of the higher affinity for HS (K(d) = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12gamma to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12alpha. In good agreement, mutant CXCL12gamma chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12gamma features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12gamma the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells.


Asunto(s)
Quimiocina CXCL12/fisiología , Factores Quimiotácticos/química , Animales , Células CHO , Movimiento Celular , Quimiocina CXCL12/química , Colágeno/química , Cricetinae , Cricetulus , Combinación de Medicamentos , Glicosaminoglicanos/metabolismo , Humanos , Cinética , Laminina/química , Ratones , Unión Proteica , Proteoglicanos/química , Receptores CXCR4/química , Resonancia por Plasmón de Superficie
18.
Anal Chem ; 80(9): 3476-82, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18348577

RESUMEN

In order to construct tools able to screen oligosaccharide-protein interactions, we have developed a polypyrrole-based oligosaccharide chip constructed via a copolymerization process of pyrrole and pyrrole-modified oligosaccharide. For our study, GAG (glycosaminoglycans) or GAG fragments, which are involved in many fundamental biological processes, were modified by the pyrrole moiety on their reducing end and then immobilized on the chip. The parallel binding events on the upperside of the surface can be simultaneously monitored and quantified in real time and without labeling by surface plasmon resonance imaging (SPRi). We show that electrocopolymerization of the oligosaccharide-pyrrole above a gold surface enables the covalent immobilization of multiple probes and the subsequent monitoring of their binding capacities using surface plasmon resonance imaging. Moreover, a biological application was made involving different GAG fragments and different proteins, including stromal cell-derived factor-1alpha (SDF-1alpha), interferon-gamma (IFN-gamma), and monoclonal antibody showing different affinity pattern.


Asunto(s)
Glicosaminoglicanos/análisis , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligosacáridos/química , Polímeros/química , Proteínas/análisis , Pirroles/química , Resonancia por Plasmón de Superficie/métodos , Quimiocina CXCL12/análisis , Heparina/análisis , Interferón gamma/análisis
19.
PLoS One ; 2(10): e1110, 2007 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17971873

RESUMEN

BACKGROUND: CXCL12alpha, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4) and heparan sulfate (HS). The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12gamma, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. METHODOLOGY/PRINCIPAL FINDINGS: Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12gamma first 68 amino acids adopt a structure closely related to the well described alpha isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60% of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM), and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. CONCLUSIONS/SIGNIFICANCE: Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the gamma isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS could differentially orchestrate the CXCL12 mediated directional cell kinesis.


Asunto(s)
Quimiocina CXCL12/química , Regulación de la Expresión Génica , Glicosaminoglicanos/química , Receptores CXCR4/química , Animales , Cationes , Heparina/química , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Conformación Molecular , Unión Proteica , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
20.
J Biol Chem ; 279(42): 43854-60, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15292258

RESUMEN

Stromal cell-derived factor-1 (SDF-1) is a CXC chemokine that is constitutively expressed in most tissues and displayed on the cell surface in association with heparan sulfate (HS). Its numerous biological effects are mediated by a specific G protein-coupled receptor, CXCR4. A number of cells inactivate SDF-1 by specific processing of the N-terminal domain of the chemokine. In particular, CD26/dipeptidyl peptidase IV (DPP IV), a serine protease that co-distributes with CXCR4 at the cell surface, mediates the selective removal of the N-terminal dipeptide of SDF-1. We report here that heparin and HS specifically prevent the processing of SDF-1 by DPP IV expressed by Caco-2 cells. The level of processing increases with the level of differentiation of these cells, which correlates with an increase of DPP IV activity. A mutant SDF-1 that does not interact with HS is readily cleaved by DPP IV, a process that is not inhibited by HS, demonstrating that a productive interaction between HS and SDF-1 is required for the protection to take place. Moreover, we found that protection depends on the degree of polymerization of the HS sulfated S-domains. Finally a structural model of SDF-1, in complex with HS oligosaccharides of defined length, rationalizes the experimental data. The mechanisms by which HS regulates SDF-1 may thus include, in addition to its ability to locally concentrate the chemokine at the cell surface, a control of selective protease cleavage events that directly affect the chemokine activity.


Asunto(s)
Quimiocinas CXC/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Heparina/farmacología , Heparitina Sulfato/farmacología , Oligosacáridos/farmacología , Antígenos CD/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Quimiocina CXCL12 , Quimiocinas CXC/química , Heparina/química , Heparitina Sulfato/química , Humanos , Cinética , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...