Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Epilepsia Open ; 9(2): 758-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38129960

RESUMEN

About 50% of individuals with developmental and epileptic encephalopathies (DEEs) are unsolved following genetic testing. Deep intronic variants, defined as >100 bp from exon-intron junctions, contribute to disease by affecting the splicing of mRNAs in clinically relevant genes. Identifying deep intronic pathogenic variants is challenging and resource intensive, and interpretation is difficult due to limited functional annotations. We aimed to identify deep intronic variants in individuals suspected to have unsolved single gene DEEs. In a research cohort of unsolved cases of DEEs, we searched for children with a DEE syndrome predominantly caused by variants in specific genes in >80% of described cases. We identified two children with Dravet syndrome and one individual with classic lissencephaly. Multiple sequencing and bioinformatics strategies were employed to interrogate intronic regions in SCN1A and PAFAH1B1. A novel de novo deep intronic 12 kb deletion in PAFAH1B1 was identified in the individual with lissencephaly. We showed experimentally that the deletion disrupts mRNA splicing, which results in partial intron retention after exon 2 and disruption of the highly conserved LisH motif. We demonstrate that targeted interrogation of deep intronic regions using multiple genomics technologies, coupled with functional analysis, can reveal hidden causes of unsolved monogenic DEE syndromes. PLAIN LANGUAGE SUMMARY: Deep intronic variants can cause disease by affecting the splicing of mRNAs in clinically relevant genes. A deep intronic deletion that caused abnormal splicing of the PAFAH1B1 gene was identified in a patient with classic lissencephaly. Our findings reinforce that targeted interrogation of deep intronic regions and functional analysis can reveal hidden causes of unsolved epilepsy syndromes.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Epilepsias Mioclónicas , Niño , Humanos , Intrones/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Pruebas Genéticas , Mutación , Epilepsias Mioclónicas/genética
2.
medRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873138

RESUMEN

Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.

3.
Ann Neurol ; 94(5): 825-835, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597255

RESUMEN

OBJECTIVE: Familial mesial temporal lobe epilepsy (FMTLE) is an important focal epilepsy syndrome; its molecular genetic basis is unknown. Clinical descriptions of FMTLE vary between a mild syndrome with prominent déjà vu to a more severe phenotype with febrile seizures and hippocampal sclerosis. We aimed to refine the phenotype of FMTLE by analyzing a large cohort of patients and asked whether common risk variants for focal epilepsy and/or febrile seizures, measured by polygenic risk scores (PRS), are enriched in individuals with FMTLE. METHODS: We studied 134 families with ≥ 2 first or second-degree relatives with temporal lobe epilepsy, with clear mesial ictal semiology required in at least one individual. PRS were calculated for 227 FMTLE cases, 124 unaffected relatives, and 16,077 population controls. RESULTS: The age of patients with FMTLE onset ranged from 2.5 to 70 years (median = 18, interquartile range = 13-28 years). The most common focal seizure symptom was déjà vu (62% of cases), followed by epigastric rising sensation (34%), and fear or anxiety (22%). The clinical spectrum included rare cases with drug-resistance and/or hippocampal sclerosis. FMTLE cases had a higher mean focal epilepsy PRS than population controls (odds ratio = 1.24, 95% confidence interval = 1.06, 1.46, p = 0.007); in contrast, no enrichment for the febrile seizure PRS was observed. INTERPRETATION: FMTLE is a generally mild drug-responsive syndrome with déjà vu being the commonest symptom. In contrast to dominant monogenic focal epilepsy syndromes, our molecular data support a polygenic basis for FMTLE. Furthermore, the PRS data suggest that sub-genome-wide significant focal epilepsy genome-wide association study single nucleotide polymorphisms are important risk variants for FMTLE. ANN NEUROL 2023;94:825-835.


Asunto(s)
Epilepsia del Lóbulo Temporal , Convulsiones Febriles , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/diagnóstico , Estudio de Asociación del Genoma Completo , Convulsiones Febriles/genética , Imagen por Resonancia Magnética , Electroencefalografía , Síndrome , Hipocampo
4.
Dev Med Child Neurol ; 65(9): 1247-1255, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36775823

RESUMEN

AIM: To determine indications and prescribing patterns for antiseizure medications (ASMs) in children by age, sex, and socioeconomic status. METHOD: This retrospective study searched the New Zealand database of ASM prescriptions dispensed to individuals aged 18 years or under during 2015 in three regions of New Zealand (48% paediatric population). Medical records were reviewed by a paediatric neurologist for indication. ASMs were grouped into old or new (1993 onwards). RESULTS: In total, 2594 children (0 to 18 years, mean age 11 years 2 months, median 12 years; 51% male) were dispensed 3557 ASMs for seizures (76%), pain (6%), headache (5%), mental health (3%), and movement disorders (2%). After 10 years of age, lamotrigine was more likely and valproate less likely to be prescribed in females than males. No sex difference was observed for valproate prescriptions for non-seizure indications. Topiramate prescriptions increased in adolescent females. Prescriptions for non-seizure indications increased from 7% in children aged 6 years or under to 31% in 16- to 18-year-olds. The proportion of children receiving a new ASM compared to an old ASM was greater in children from higher than lower socioeconomic areas. INTERPRETATION: Our results highlight a need for focused ASM teratogenicity messaging to clinicians prescribing ASMs for non-seizure indications. In addition, to improve equity of epilepsy care, it is critical for health policies to consider socioeconomic factors that impact on ASM prescribing.


Asunto(s)
Convulsiones , Ácido Valproico , Adolescente , Femenino , Humanos , Niño , Masculino , Ácido Valproico/uso terapéutico , Nueva Zelanda , Estudios Retrospectivos , Convulsiones/tratamiento farmacológico , Bases de Datos Factuales , Anticonvulsivantes/uso terapéutico
5.
Neurology ; 100(13): e1363-e1375, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36581463

RESUMEN

BACKGROUND AND OBJECTIVES: We aimed to determine the population-based cumulative incidence and prevalence of developmental and epileptic encephalopathies (DEEs) and intellectual disability and epilepsy (ID+E) in children. We analyzed the cumulative incidence of specific epilepsy syndromes. METHODS: Children younger than 16 years with a DEE or ID+E were ascertained using EEG records from 2000 to 2016 in the Wellington region of New Zealand. Epilepsy syndromes were diagnosed on medical record and EEG review. Point prevalence and cumulative incidence for children with epilepsy and developmental impairment, DEE and ID+E were calculated. Cumulative incidence for each epilepsy syndrome was calculated. RESULTS: The cohort comprised 235 children (58% male) with developmental impairment and epilepsy, including 152 (65%) with DEE and 83 (35%) with ID+E. The median age of seizure onset was 15.4 months (range day 1-15 years). The median follow-up from seizure onset was 7.9 years (range 0-18.2 years). Point prevalence for the broad group of children with epilepsy and developmental impairment was 175/100,000 children (95% CI 149-203; DEE 112 and ID+E 63/100,000 children). Cumulative incidence for DEE was 169/100,000 children (95% CI 144-199) and that for ID+E was 125/100,000 children (95% CI 95.4-165). Cumulative incidence per 100,000 children was as follows: infantile epileptic spasms syndrome 58.2 (95% CI 45.0-75.3), epilepsy with myoclonic-atonic seizures 16.4 (95% CI 9.69-27.7), Lennox-Gastaut syndrome 13.2 (95% CI 4.1-41.9), and Dravet syndrome 5.1 (95% CI 2.1-12.2). Fifty/152 (33%) of children with DEE and 70/83 (84%) with ID+E could not be diagnosed with a known epilepsy syndrome. DISCUSSION: Epilepsy and developmental impairment before the age of 16 years occurs in 1 in 340 children, with 1 in 590 having a DEE and 1 in 800 having ID+E. These individuals require significant health and community resources; therefore, these data will inform complex health service and education planning. Epidemiologic studies have focused on early childhood-onset DEEs. These do not fully reflect the burden of these disorders because 27% of DEEs and 70% of ID+E begin later, with seizure onset after the age of 3 years. Understanding the cumulative incidence of specific syndromes together with the broad group of DEEs is essential for the planning of therapeutic trials. Given trials focus on specific syndromes, there is a risk that effective therapies will not be developed for one-third of children with DEE.


Asunto(s)
Epilepsias Mioclónicas , Discapacidad Intelectual , Síndrome de Lennox-Gastaut , Niño , Humanos , Preescolar , Masculino , Recién Nacido , Adolescente , Femenino , Discapacidad Intelectual/epidemiología , Síndrome de Lennox-Gastaut/epidemiología , Epilepsias Mioclónicas/diagnóstico , Electroencefalografía , Convulsiones
6.
Neurology ; 100(6): e603-e615, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36307226

RESUMEN

BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Canales de Potasio Éter-A-Go-Go , Niño , Humanos , Recién Nacido , Epilepsia/genética , Epilepsia Generalizada/genética , Mutación , Fenotipo , Convulsiones/genética , Canales de Potasio Éter-A-Go-Go/genética
7.
Genet Med ; 24(12): 2464-2474, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36214804

RESUMEN

PURPOSE: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20. METHODS: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed. RESULTS: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type ß-propeller domain of the KLHL20 protein, which shapes the substrate binding surface. CONCLUSION: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Convulsiones Febriles , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Ubiquitina-Proteína Ligasas/genética
8.
EBioMedicine ; 81: 104079, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636315

RESUMEN

BACKGROUND: The epilepsies are highly heritable conditions that commonly follow complex inheritance. While monogenic causes have been identified in rare familial epilepsies, most familial epilepsies remain unsolved. We aimed to determine (1) whether common genetic variation contributes to familial epilepsy risk, and (2) whether that genetic risk is enriched in familial compared with non-familial (sporadic) epilepsies. METHODS: Using common variants derived from the largest epilepsy genome-wide association study, we calculated polygenic risk scores (PRS) for patients with familial epilepsy (n = 1,818 from 1,181 families), their unaffected relatives (n = 771), sporadic patients (n = 1,182), and population controls (n = 15,929). We also calculated separate PRS for genetic generalised epilepsy (GGE) and focal epilepsy. Statistical analyses used mixed-effects regression models to account for familial relatedness, sex, and ancestry. FINDINGS: Patients with familial epilepsies had higher epilepsy PRS compared to population controls (OR 1·20, padj = 5×10-9), sporadic patients (OR 1·11, padj = 0.008), and their own unaffected relatives (OR 1·12, padj = 0.01). The top 1% of the PRS distribution was enriched 3.8-fold for individuals with familial epilepsy when compared to the lowest decile (padj = 5×10-11). Familial PRS enrichment was consistent across epilepsy type; overall, polygenic risk was greatest for the GGE clinical group. There was no significant PRS difference in familial cases with established rare variant genetic etiologies compared to unsolved familial cases. INTERPRETATION: The aggregate effects of common genetic variants, measured as polygenic risk scores, play an important role in explaining why some families develop epilepsy, why specific family members are affected while their relatives are not, and why families manifest specific epilepsy types. Polygenic risk contributes to the complex inheritance of the epilepsies, including in individuals with a known genetic etiology. FUNDING: National Health and Medical Research Council of Australia, National Institutes of Health, American Academy of Neurology, Thomas B and Jeannette E Laws McCabe Fund, Mirowski Family Foundation.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticos , Epilepsia/genética , Epilepsia Generalizada/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética
9.
Hum Mol Genet ; 31(14): 2307-2316, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137044

RESUMEN

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.


Asunto(s)
Ciliopatías , Hamartoma , Enfermedades Hipotalámicas , Ciliopatías/genética , Hamartoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades Hipotalámicas/complicaciones , Enfermedades Hipotalámicas/genética , Imagen por Resonancia Magnética
10.
Epilepsia Open ; 7(1): 170-180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34717047

RESUMEN

Recessive variants in RARS2, a nuclear gene encoding a mitochondrial protein, were initially reported in pontocerebellar hypoplasia. Subsequently, a recessive RARS2 early-infantile (<12 weeks) developmental and epileptic encephalopathy was described with hypoglycaemia and lactic acidosis. Here, we describe two unrelated patients with a novel RARS2 phenotype and reanalyse the published RARS2 epilepsy phenotypes and variants. Our novel cases had infantile-onset myoclonic developmental and epileptic encephalopathy, presenting with a progressive movement disorder from 9 months on a background of normal development. Development plateaued and regressed thereafter, with mild to profound impairment. Multiple drug-resistant generalized and focal seizures occurred with episodes of non-convulsive status epilepticus. Seizure types included absence, atonic, myoclonic, and focal seizures. Electroencephalograms showed diffuse slowing, multifocal, and generalised spike-wave activity, activated by sleep. Both patients had compound heterozygous RARS2 variants with likely impact on splicing and transcription. Remarkably, of the now 52 RARS2 variants reported in 54 patients, our reanalysis found that 44 (85%) have been shown to or are predicted to affect splicing or gene expression leading to protein truncation or nonsense-mediated decay. We expand the RARS2 phenotypic spectrum to include infantile encephalopathy and suggest this gene is enriched for pathogenic variants that disrupt splicing.


Asunto(s)
Arginino-ARNt Ligasa , Encefalopatías , Epilepsia , Arginino-ARNt Ligasa/genética , Encefalopatías/genética , Electroencefalografía , Humanos , Fenotipo , Convulsiones/genética
11.
Auton Neurosci ; 237: 102907, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34773737

RESUMEN

The underlying pathophysiology of sudden unexpected death in epilepsy (SUDEP) remains unclear. This phenomenon is likely multifactorial, and there is considerable evidence that genetic factors play a role. There are certain genetic causes of epilepsy in which the risk of SUDEP appears to be increased relative to epilepsy overall. For individuals with pathogenic variants in genes including SCN1A, SCN1B, SCN8A, SCN2A, GNB5, KCNA1 and DEPDC5, there are varying degrees of evidence to suggest an increased risk for sudden death. Why the risk for sudden death is higher is not completely clear; however, in many cases pathogenic variants in these genes are also associated with autonomic dysfunction, which is hypothesized as a contributing factor to SUDEP. We review the evidence for increased SUDEP risk for patients with epilepsy due to pathogenic variants in these genes, and also discuss what is known about autonomic dysfunction in these contexts.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Muerte Súbita , Epilepsia/genética , Humanos , Factores de Riesgo
12.
JAMA Netw Open ; 4(9): e2123930, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477852

RESUMEN

Importance: Developmental and epileptic encephalopathies (DEEs) are the most severe group of drug-resistant epilepsies. Alternatives to oral therapies are urgently needed to reduce seizures and improve developmental outcomes and comorbidities in this medically complex population. Objective: To assess the safety and tolerability of cannabidiol (CBD) transdermal gel in children with DEEs and to evaluate seizure frequency, sleep, and quality of life. Design, Setting, and Participants: This nonrandomized controlled trial was conducted in 2 centers in Australia and New Zealand from April 2018 to July 2019. Children and adolescents aged 3 to 18 years with DEEs who were receiving a stable regimen of 1 to 4 antiseizure medications were eligible for this study. After 1-month baseline and titration periods, patients entered a 5.5-month flexible-dosing maintenance period for a total of 6.5 months of treatment. Data were analyzed throughout the 6.5-month treatment period. Interventions: Twice-daily applications of CBD transdermal gel at doses of 125 to 500 mg for 6.5 months. Main Outcomes and Measures: Safety and tolerability assessments included adverse events (AEs) and examination of skin. The outcome for seizures was the median percentage change from baseline in monthly (28-day) seizure frequency of focal impaired awareness seizures (FIAS) and tonic-clonic seizures (TCS) over 6.5 months. Results: Of 48 patients (mean [SD] age, 10.5 [3.8] years; 26 [54%] boys), 29 (60%) had at least 1 treatment-related AE over 6.5 months; 44 of 46 treatment-related AEs (96%) were mild or moderate. Treatment-related AEs that occurred in at least 5% of patients were application-site dryness, application-site pain, and somnolence (each reported by 4 patients [8%]). The only treatment-related gastrointestinal AE was diarrhea, reported in a single patient. CBD treatment was associated with reductions in FIAS and TCS frequency. Analysis of the 33 patients with FIAS and TCS showed a median (interquartile range) monthly reduction in seizures of 58% (-5.3% to 81.8%) at 5 months and 43.5% (-23.8% to 57.5%) over the entire 6.5-month study period. Parents and caregivers noted improvements in social or interpersonal engagement and irritability (33 of 43 [77%] participants); alertness, energy, and sleep (23 of 43 [53%]); and cognition or concentration (20 of 43 [47%]). Conclusions and Relevance: In this study, CBD transdermal gel was safe, well tolerated, and was associated with reductions in FIAS and TCS frequency and disease burden. Trial Registration: ClinicalTrials.gov Identifier: ACTRN12618000516280.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Cannabidiol/uso terapéutico , Discapacidades del Desarrollo , Epilepsia Refractaria/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Administración Cutánea , Adolescente , Anticonvulsivantes/administración & dosificación , Australia , Cannabidiol/administración & dosificación , Niño , Preescolar , Femenino , Geles , Humanos , Masculino , Nueva Zelanda , Resultado del Tratamiento
13.
Epilepsia Open ; 6(1): 149-159, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33681658

RESUMEN

Objectives: Identifying genetic pathogenic variants improves clinical outcomes for children with developmental and epileptic encephalopathy (DEE) by directing therapy and enabling accurate reproductive and prognostic information for families. We aimed to explore the additional personal utility of receiving a genetic diagnosis for families. Methods: Semi-structured interviews were conducted with fifteen families of children with a DEE who had received a genetic diagnosis. The interviews stimulated discussion focusing on the impact of receiving a genetic diagnosis for the family. Interview transcripts were analyzed using the six-step systematic process of interpretative phenomenological analysis (IPA). Results: Three key themes were identified: "Importance of the label," "Relief to end the diagnostic journey," and "Factors that influence personal utility." Families reported that receiving a genetic label improved their knowledge about the likely trajectory of the DEE, increased their hope for the future, and helped them communicate with others. The relief of finally having an answer for the cause of their child's DEE alleviated parental guilt and self-blame as well as helped families to process their grief and move forward. Delay in receipt of a genetic diagnosis diluted its psychological impact. Significance: To date, the factors associated with the personal utility of a genetic diagnosis for DEEs have been under appreciated. This study demonstrates that identifying a genetic diagnosis for a child's DEE can be a psychological turning point for families. A genetic result has the potential to set these families on an adaptive path toward better quality of life through increased understanding, social connection, and support. Early access to genetic testing is important as it not only increases clinical utility, but also increases personal utility with early mitigation of family stress, trauma, and negative experiences.


Asunto(s)
Síndromes Epilépticos , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Trastornos del Neurodesarrollo , Padres/psicología , Adolescente , Adulto , Encefalopatías , Niño , Preescolar , Síndromes Epilépticos/diagnóstico , Síndromes Epilépticos/genética , Femenino , Humanos , Lactante , Recién Nacido , Entrevistas como Asunto , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Adulto Joven
14.
Epilepsy Res ; 170: 106537, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421703

RESUMEN

OBJECTIVE: We investigated the possible significance of rare genetic variants to response to valproic acid (VPA) and ethosuximide (ETX) in patients with absence epilepsy. Our primary hypothesis was that rare CACNA1H variants are more frequent in ETX-non-responsive patients compared to ETX-responsive. Our secondary hypothesis was that rare variants in GABA-receptor genes are more frequent in VPA-non-responsive patients compared to VPA-responsive. METHODS: We recruited patients with absence epilepsy treated with both VPA and ETX, and performed whole exome sequencing in order to investigate the potential role of rare variants in CACNA1H, other voltage-gated calcium channel (VGCC) genes, or GABA-receptor genes in predicting response to ETX or VPA. RESULTS: Sixty-two patients were included; 12 were ETX-responsive, 14 VPA-responsive, and 36 did not have a clear positive response to either medication. We did not find significant enrichment inCACNA1H rare variants in ETX-responsive patients (odds ratio 3.43; 0.43-27.65; p = 0.20), nor was there enrichment for other VGCC genes. No significant enrichment of GABA-receptor gene rare variants was seen for VPA-non-responsive patients versus VPA-responsive. We found enrichment of rare GABA-receptor variants in our absence cohort compared to controls (odds ratio 3.82; 1.68-8.69). There was no difference in frequency of CACNA1H rs61734410 and CACNA1I rs3747178 polymorphisms between ETX-responsive and ETX-non-responsive groups; these polymorphisms have previously been reported to predict lack of response to ETX in absence epilepsy. SIGNIFICANCE: We conclude that if CACNA1H rare variants predict lack of response to ETX, a larger sample is necessary to test this with sufficient power. Increased GABA-receptor gene rare variant frequency in absence epilepsy patients who fail initial anti-seizure therapy suggests subtle GABA receptor dysfunction may contribute to the underlying pathophysiology.


Asunto(s)
Epilepsia Tipo Ausencia , Anticonvulsivantes/uso terapéutico , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Etosuximida/uso terapéutico , Humanos , Preparaciones Farmacéuticas , Ácido Valproico/uso terapéutico , Ácido gamma-Aminobutírico
15.
Epilepsia ; 62(2): 325-334, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33410528

RESUMEN

OBJECTIVE: Asparagine-linked glycosylation 13 (ALG13) deficiencies have been repeatedly described in the literature with the clinical phenotype of a developmental and epileptic encephalopathy (DEE). Most cases were females carrying the recurrent ALG13 de novo variant, p.(Asn107Ser), with normal transferrin electrophoresis. METHODS: We delineate the phenotypic spectrum of 38 individuals, 37 girls and one boy, 16 of them novel and 22 published, with the most common pathogenic ALG13 variant p.(Asn107Ser) and additionally report the phenotype of three individuals carrying other likely pathogenic ALG13 variants. RESULTS: The phenotypic spectrum often comprised pharmacoresistant epilepsy with epileptic spasms, mostly with onset within the first 6 months of life and with spasm persistence in one-half of the cases. Tonic seizures were the most prevalent additional seizure type. Electroencephalography showed hypsarrhythmia and at a later stage of the disease in one-third of all cases paroxysms of fast activity with electrodecrement. ALG13-related DEE was usually associated with severe to profound developmental delay; ambulation was acquired by one-third of the cases, whereas purposeful hand use was sparse or completely absent. Hand stereotypies and dyskinetic movements including dystonia or choreoathetosis were relatively frequent. Verbal communication skills were absent or poor, and eye contact and pursuit were often impaired. SIGNIFICANCE: X-linked ALG13-related DEE usually manifests as West syndrome with severe to profound developmental delay. It is predominantly caused by the recurrent de novo missense variant p.(Asn107Ser). Comprehensive functional studies will be able to prove or disprove an association with congenital disorder of glycosylation.


Asunto(s)
Discapacidades del Desarrollo/fisiopatología , Epilepsia Refractaria/fisiopatología , N-Acetilglucosaminiltransferasas/genética , Espasmos Infantiles/fisiopatología , Hormona Adrenocorticotrópica/uso terapéutico , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Discapacidades del Desarrollo/genética , Dieta Cetogénica , Epilepsia Refractaria/genética , Epilepsia Refractaria/terapia , Discinesias/genética , Discinesias/fisiopatología , Electroencefalografía , Síndromes Epilépticos/genética , Síndromes Epilépticos/fisiopatología , Síndromes Epilépticos/terapia , Femenino , Glucocorticoides/uso terapéutico , Hormonas/uso terapéutico , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/fisiopatología , Imagen por Resonancia Magnética , Masculino , Mutación Missense , Fenotipo , Conducta Social , Espasmos Infantiles/genética
16.
Genet Med ; 23(3): 543-554, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33149277

RESUMEN

PURPOSE: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority. METHODS: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC. RESULTS: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-associated missense variants. We report p.Asp724 as second mutational hotspot (4/19 cases). Genotype-phenotype correlation confirms a consistently severe phenotype in p.Arg87 patients but a more variable phenotype in p.Asp724 and other substitutions. Three individuals with milder phenotypes carry putative loss-of-function variants, which remain of unclear pathogenicity. Structural modeling predicted missense variants to disturb interactions within the WRC or impair CYFIP2 stability. Consistent with its role in WRC-mediated actin polymerization we substantiate aberrant regulation of the actin cytoskeleton in patient fibroblasts. CONCLUSION: Our study expands the clinical and molecular spectrum of CYFIP2-related neurodevelopmental disorder and provides evidence for aberrant WRC-mediated actin dynamics as contributing cellular pathomechanism.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Convulsiones
17.
Front Neurol ; 11: 925, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013630

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is the most common cause of premature mortality in individuals with epilepsy. Acute and adaptive changes in heart rhythm in epilepsy implicate cardiac dysfunction as a potential pathogenic mechanism in SUDEP. Furthermore, variants in genes associated with Long QT syndrome (LQTS) have been identified in patients with SUDEP. LQTS is a cardiac arrhythmia condition that causes sudden cardiac death with strong similarities to SUDEP. Here, we discuss the possibility of an additive risk of death due to the functional consequences of a pathogenic variant in an LQTS gene interacting with seizure-mediated changes in cardiac function. Extending this general concept, we propose a hypothesis that common variants in LQTS genes, which cause a subtle impact on channel function and would not normally be considered risk factors for cardiac disease, may increase the risk of sudden death when combined with epilepsy. A greater understanding of the interaction between epilepsy, cardiac arrhythmia, and SUDEP will inform our understanding of SUDEP risk and subsequent potential prophylactic treatment.

18.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32954514

RESUMEN

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/genética , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Canales de Potasio Shab/genética , Adolescente , Adulto , Encefalopatías/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Electroencefalografía/tendencias , Epilepsia/fisiopatología , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
19.
Adv Exp Med Biol ; 1298: 177-187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32852734

RESUMEN

Protocadherin-19 (PCDH19) pathogenic variants cause an infantile onset epilepsy syndrome called Girls Clustering Epilepsy due to the vast majority of affected individuals being female. This syndromic name was developed to foster early recognition and diagnosis in infancy. It has, however, sparked debate, as, there are rare males with postzygotic somatic, and therefore, mosaic, PCDH19 pathogenic variants with similar clinical features to females. Conversely, "transmitting" males with germline inherited PCDH19 variants are considered asymptomatic. To date, there has been no standardized neuropsychiatric assessment of males with PCDH19 pathogenic variants. Here, we studied 15 males with PCDH19 pathogenic variants (nine mosaic and six transmitting) aged 2 to 70 years. Our families completed a survey including standardized clinical assessments: Social Responsiveness Scale, Strengths and Difficulties Questionnaire, Behavior Rating Inventory of Executive Function, and Dimensional Obsessive-Compulsive Scale. We identified neuropsychiatric abnormalities in two males with germline PCDH19 possibly pathogenic variants. One had a prior history of a severe encephalopathic illness, which may have been unrelated. We also describe a non-penetrant somatic mosaic male with mosaicism confirmed in blood, but not identified in skin fibroblasts. Our data suggest that transmitting hemizygous males are generally unaffected, in contrast to males with postzygotic somatic mosaic variants who show a similar neuropsychiatric profile to females who are naturally mosaic, due to X-chromosome inactivation. The penetrance of PCDH19 pathogenic variants has been estimated to be 80%. Like females, not all mosaic males are affected. From our small sample, we estimate that males with mosaic PCHD19 pathogenic variants have a penetrance of 85%. With these insights into the male phenotypic spectrum of PCDH19 epilepsy, we propose the new term Clustering Epilepsy (CE). Both affected females and males typically present with infantile onset of clusters of seizures.


Asunto(s)
Cadherinas/genética , Epilepsia , Adolescente , Adulto , Anciano , Niño , Preescolar , Epilepsia/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mosaicismo , Mutación , Penetrancia , Protocadherinas , Adulto Joven
20.
Transl Psychiatry ; 10(1): 127, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366910

RESUMEN

Protocadherin-19 (PCDH19) pathogenic variants cause an early-onset seizure disorder called girls clustering epilepsy (GCE). GCE is an X-chromosome disorder that affects heterozygous females and mosaic males, however hemizygous ("transmitting") males are spared. We aimed to define the neuropsychiatric profile associated with PCDH19 pathogenic variants and determine if a clinical profile exists for transmitting males. We also examined genotype- and phenotype-phenotype associations. We developed an online PCDH19 survey comprising the following standardized assessments: The Behavior Rating Inventory of Executive Function; the Social Responsiveness Scale, 2nd edition; the Strengths and Difficulties Questionnaire; and the Dimensional Obsessive-Compulsive Scale. Genetic, seizure, and developmental information were also collected. The survey was completed by patients or by caregivers on behalf of patients. Of the 112 individuals represented (15 males), there were 70 unique variants. Thirty-five variants were novel and included a newly identified recurrent variant Ile781Asnfs*3. There were no significant differences in phenotypic outcomes between published and unpublished cases. Seizures occurred in clusters in 94% of individuals, with seizures resolving in 28% at an average age of 17.5 years. Developmental delay prior to seizure onset occurred in 18% of our cohort. Executive dysfunction and autism spectrum disorder (ASD) occurred in approximately 60% of individuals. The ASD profile included features of attention-deficit hyperactivity disorder. In addition, 21% of individuals met criteria for obsessive-compulsive disorder that appeared to be distinct from ASD. There were no phenotypic differences between heterozygous females and mosaic males. We describe a mosaic male and two hemizygous males with atypical clinical profiles. Earlier seizure onset age and increased number of seizures within a cluster were associated with more severe ASD symptoms (p = 0.001), with seizure onset also predictive of executive dysfunction (p = 4.69 × 10-4) and prosocial behavior (p = 0.040). No clinical profile was observed for transmitting males. This is the first patient-derived standardized assessment of the neuropsychiatric profile of GCE. These phenotypic insights will inform diagnosis, management, and prognostic and genetic counseling.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Adolescente , Cadherinas/genética , Análisis por Conglomerados , Epilepsia/genética , Femenino , Humanos , Masculino , Atención Dirigida al Paciente , Fenotipo , Protocadherinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA