RESUMEN
Nanofluid is a specially crafted fluid comprising a pure fluid with dispersed nanometer-sized particles. Incorporation these nanoparticles into pure fluid results in a fluid with improved thermal properties in comparison of pure fluid. The enhanced properties of nanofluids make them highly sought after, in diverse applications, consisting of coolant of devices, heat exchangers, and thermal solar systems. In this study hybrid nanofluid consisting of copper, alumina and titanium nanoparticles on a curved sheet has investigated with impact of chemical reactivity, magnetic field and Joule heating. The leading equations have converted to normal equations by using appropriate set of variables and has then evaluated by homotopy analysis method. The outcomes are shown through Figures and Tables and are discussed physically. It has revealed in this study that Cu-nanofluid flow has augmented velocity, temperature, and volume fraction distributions than those of Al2O3-nanofluid and TiO2-nanofluid. Also, the Cu-nanofluid flow has higher heat and mass transfer rates than those of Al2O3-nanofluid and TiO2-nanofluid.
RESUMEN
The fluid flow over an extending sheet has many applications in different fields which include, manufacturing processes, coating, thin film decomposition, heat and mass transfer, biomedical applications, aerospace engineering, environmental science, energy production. Keeping in mind these applications, the non-Newtonian hybrid nanofluid flow comprising of Cu and CuO nanoparticles over an extending sheet is analyzed in this work. Two different base fluids called kerosene oil and water have been incorporated. The sheet is considered to be thermally convective along with zero mass flux condition. The main equations of modeled problem have been transformed to dimensionless form by using similarity variables. The designed problem is evaluated computationally by using bvp4c Matlab function. Validation of the present results is also performed. The impacts of magnetic, Brownian motion, chemical reaction, suction and thermophoresis factors are analyzed and discussed in details. The outcomes of the present investigation declare that the kerosene oil-based hybrid nanofluid flow has greater velocity and concentration profiles than that of the water-based hybrid nanofluid flow. The water-based hybrid nanofluid has greater temperature distribution than that of kerosene oil-based hybrid nanofluid flow. The streamlines of the kerosene oil-based Newtonian and non-Newtonian hybrid nanofluid flows are more stretched than water-based Newtonian and non-Newtonian hybrid nanofluid flows.
RESUMEN
This article presents the two-dimensional flow of hybrid nanofluid comprising of gyrotactic microorganisms under the consequences of multiple slip conditions, magnetic field and thermal radiation across an elongating curved surface using porous media. The nanoparticles of TiO2 and Fe3O4 have dispersed in water for composition of hybrid nanofluid. Main equations of the problem are converted to ODEs by using an appropriate set of variables. Solution of the present model is determined with the help of bvp4c technique, which is explained in detail in the coming section. Validation of the current results is done versus the published work. The effects of various emerging factors on flow distributions have been considered and explained. Additionally, the slips conditions are incorporated to analyze various flow distributions. The present outcomes show that the rising magnetic factor lessens the velocity profile, whereas rises the temperature profile. The curvature factor has supported both temperature and velocity distributions. Growth in velocity, thermal, concentration, and microorganisms slip factors reduce the corresponding distributions. The greater impact of the embedded parameters is found on hybrid nanofluid flow when matched to nanofluid flow.
RESUMEN
The current article aims to examine the magnetohydrodynamics (MHD) impact on the flow of MgO-Ag/water-based hybrid nanoliquid with motile microorganisms and the fluid is allowed to flow over a Riga plate subject to slip effects and activation energy. Furthermore, the presence of a uniform heat source/sink is also addressed in the energy equation. In addition to this, the thermophoresis effect is highlighted in the concentration equation. From the present proposed model, we get a non-linear system of the governing equations. The obtained system of partial differential equations (PDEs) is converted to the dimensionless system of ordinary differential equations (ODEs) using the similarity transformation. The obtained high non-linear system of equations has been solved numerically, using the parametric continuation method (PCM). In the present analysis, the main motivation is to highlight the heat transfer rate of MgO-Ag/water-based hybrid nanofluid flow over a Riga plate. The second motivation of the present research is to highlight the impact of slip conditions on the velocity, energy, and mass profiles. From the graphical analysis, it is depicted that the slip conditions reduce the velocity, energy, and mass outlines. From the present analysis, we concluded that volume friction reduced the flow profile while increasing the temperature of the fluid flow over a Riga plate. All the parameters of the present research are highlighted in velocity temperature and concertation of the fluid. In addition to this in all the figures we have compared the hybrid nanofluid with mono nanofluid and the also the comparison between slip and no-slip conditions have carried out through graphs for velocity, temperature, and concentration.
RESUMEN
A stratified flow may be seen regularly in a number of significant industrial operations. For instance, the stratified flow regime is typically used by gas-condensate pipelines. Clearly, only a limited set of working situations for which this flow arrangement is stable allow for the achievement of the stratified two-phase flow zone. In this paper, the authors are considered the laminar, steady and incompressible magnetohydrodynamic flow of a non-Newtonian Casson fluid flow past a stratified extending sheet. The features of bio-convection, Brownian motion, thermal radiation thermophoresis, heat source, and chemically reactive activation energy have been employed. The set of equations administered flow of fluid is converted into ordinary differential equation by suitable variables. A semi-analytical investigation of the present analysis is performed with homotopy analysis method. Endorsement of the current results with previous results is also investigated. The outcomes showed that the velocity distribution of the fluid flow lessens with higher Casson and magnetic factors. The temperature profiles of fluid flow shrinkage as the Prandtl number and Casson factor increase and enlarges with higher values of thermal radiation, magnetic, and Brownian motion factors. It is found that the growing thermophoretic and Brownian motion factors reduce the rate of thermal flow of the Casson fluid flow. In contrast, the increasing thermal stratification parameter increases the thermal flow rate of fluid.
RESUMEN
The flow of fluid over a spinning disk has a broad scope of numerous applications. It is employed in various things, including medical equipment, the braking system of cars, gas turbines, plastic films, and glass production. As a result of these applications, we considered the phenomena of Darcy Forchheimer's three-dimensional flow on TiO2-Fe3O4 nanoparticles suspended in based CMC-water fluid. The influence of thermal radiation and convective conditions is studied. Moreover, the Buongiorno model is utilized to compute the Brownian motion and the thermophoretic effect. To generate the non-dimensionalized governing equations, suitable alterations are put into use. These equations are then utilized with Matlab BVP4c. Graphs are used to analyze the behavior of velocity distributions, and thermal and concentration profiles at different parameter values. In addition, the solutions to the flow problem have been analyzed in terms of several other physical variables on velocity, temperature, concentration, drag force, heat, and mass transfer. According to the findings, it is clear that an escalates in the value of the rotation parameter leads to an increase in the radial velocity and axial velocity. In contrast, an opposite pattern is followed in the Forchheimer number. Finally, some engineering quantities are evaluated numerically and presented in tabular forms.
RESUMEN
Jet flows are employed in a variety of applications. It can be found in daily life as well as in agriculture, for example, jet flow assists with irrigation and harvest protection. The current problem is related to the study of energy and mass transference on the hybrid nanoliquid flow with mixed convection effect due to the vertical stretching surface conveying the cobalt ferrite CoFe2O4 and titanium dioxide TiO2 nanoparticles (NPs) with the base fluid water H2O. Further, the role of the chemical reaction, heat source/sink, and activation energy are investigated. By exploiting the idea of the modified Buongiorno model, the thermophoretic and Brownian diffusivity effects have discoursed on the existing flow behavior. The existing mathematical problem is framed with the application of the nonlinear higher-order PDEs. Higher-order PDEs of the mathematical model are changed into highly nonlinear ODEs by using the concepts of suitable similarity transformations. The modified higher-order nonlinear ODEs are cracked by manipulating the bvp4c technique in MATLAB. The impacts of the numerous physical flow parameters on the velocity, energy, and concentration are computed in graphical forms. Key findings from the present problem revealed that the velocity of the nanoliquid and hybrid nanofluid decreased due to greater nanoparticles volume fraction. Furthermore, the heat transportation is greater for mixed convection and thermophoresis parameter.
RESUMEN
This article presents the magnetohydrodynamic (MHD) flow of a nanoliquid due to a rotating sphere at a stagnation point. The flow is considered to be influenced by the magnetic field, dissipative, thermally radiative, and chemically reactive. Also, the thermophoretic and Brownian motion influences are taken into consideration. Some restrictions in the present analysis are taken: like there is no-slip and convective conditions, joule heating, Hall effects and buoyancy-driven. The solution of the present analysis is derived through the homotopy analysis method (HAM). The significance of several physical parameters on velocities, thermal and concentration profiles are shown with the help of Figures. Also, the significance of different physical factors on skin frictions, local Nusselt number and Sherwood number are demonstrated with the help of Tables. The outcomes show that the Nusselt number is lower for the larger Brownian motion parameter, Eckert number, and thermophoretic parameter, while the increment in the thermal radiation parameter augmented the Nusselt number. It is established that the increasing rotation, magnetic and positive constant parameters have increased the velocity profiles along the x-direction while reducing the velocity profiles along the z-direction of the nanoliquid flow. The increasing positive constant parameter reduces the thermal graph of the nanoliquid flow. Furthermore, the intensifying Eckert number, thermophoresis, Brownian motion, and thermal radiation factor have escalated the thermal profiles of the nanoliquid flow.
RESUMEN
Entropy creation by a blood-hybrid nanofluid flow with gold-tantalum nanoparticles in a tilted cylindrical artery with composite stenosis under the influence of Joule heating, body acceleration, and thermal radiation is the focus of this research. Using the Sisko fluid model, the non-Newtonian behaviour of blood is investigated. The finite difference (FD) approach is used to solve the equations of motion and entropy for a system subject to certain constraints. The optimal heat transfer rate with respect to radiation, Hartmann number, and nanoparticle volume fraction is calculated using a response surface technique and sensitivity analysis. The impacts of significant parameters such as Hartmann number, angle parameter, nanoparticle volume fraction, body acceleration amplitude, radiation, and Reynolds number on the velocity, temperature, entropy generation, flow rate, shear stress of wall, and heat transfer rate are exhibited via the graphs and tables. Present results disclose that the flow rate profile increase by improving the Womersley number and the opposite nature is noticed in nanoparticle volume fraction. The total entropy generation reduces by improving radiation. The Hartmann number expose a positive sensitivity for all level of nanoparticle volume fraction. The sensitivity analysis revealed that the radiation and nanoparticle volume fraction showed a negative sensitivity for all magnetic field levels. It is seen that the presence of hybrid nanoparticles in the bloodstream leads to a more substantial reduction in the axial velocity of blood compared to Sisko blood. An increase in the volume fraction results in a noticeable decrease in the volumetric flow rate in the axial direction, while higher values of infinite shear rate viscosity lead to a significant reduction in the magnitude of the blood flow pattern. The blood temperature exhibits a linear increase with respect to the volume fraction of hybrid nanoparticles. Specifically, utilizing a hybrid nanofluid with a volume fraction of 3% leads to a 2.01316% higher temperature compared to the base fluid (blood). Similarly, a 5% volume fraction corresponds to a temperature increase of 3.45093%.
Asunto(s)
Nanopartículas , Tantalio , Humanos , Entropía , Constricción Patológica , ArteriasRESUMEN
The current problem is concerned with the study of magnetohydrodynamic ternary hybrid nanofluid flow over two distinct geometries i.e., cone and wedge. The ternary hybrid nanoliquid with MHD has a lot of engineering and industrial applications. In polymer data processing, cone and wedge geometries are frequently utilized. Therefore, the present problem is designed to the flow of ternary hybrid nanoliquid over multiple geometries. Hybrid nanoliquids performed well in the heat transport rate as compared to the nanoliquid and conventional liquid. Here in this study, the idea of ternary hybrid nanoliquid is introduced to improve the energy and mass transmissions which show more satisfactory results in the thermal and mass transmission performance. The impacts of chemical reaction and thermal radiation are also executed in this model. The formulation of the present study is performed in the form of PDEs which are then transformed into the ODEs by using suitable similarity transformations. The homotopic analysis scheme is implemented for the semi-analytical solution of the existing model. Some major results that materialize from the present simplification are that; the tri-hybrid nanoliquid velocity is greater for the rising nanoparticles volume fractions. The enlargement in radiation parameter enlarged the tri-hybrid nanoliquid thermal profile. The mass transfer rate of the ternary hybrid nanoliquid is lesser for the Schmidt number and chemical reaction. Intensification in nanoparticles volume fractions and radiation parameter has increased the ternary hybrid nanofluid heat rate transfer for both cone and wedge geometries.
RESUMEN
This article explores the analysis of magnetized blood-based nanofluids flows over an extending cylinder. The nanofluid contains copper, copper oxide and iron oxide nanoparticles which are mixed with blood. The mathematical model has been built-up in partial differential equations (PDEs) form and then changed into ordinary different equations by mean of suitable similarity variables and then has been evaluated by homotopy analysis method (HAM). The convergence of the applied technique is presented in graphical form. During the solution process, the influences of physical parameters like magnetic parameter, unsteadiness parameter, curvature parameter and thermal relaxation time parameter on the flow profiles have been investigated and depicted in Figures and Tables. The correctness of the present model has also been presented in tabular form. The results show that the greater curvature factor reduces the radius of cylinder due to which thickness of layer becomes thin at the boundaries and therefore the velocity distribution declines, while the greater curvature parameter has the increasing impact on the temperature distribution for constant wall temperature (CWT) case and decreases the temperature distribution for prescribed surface temperature (PST) case.
RESUMEN
The present study addressed the physical significance of the entropy generation for the mixed convection time-dependent flow of cross-hybrid nanoliquid due to the stretched surface at a stagnation point. The Plot for heat transport is discoursed by applying the role of thermal radiation under convective conditions. For hybrid nanofluid, engine oil is used as a base liquid with copper (II) oxide C u O and titanium dioxide T i O 2 nanoparticles. The existing model is framed in the highly partial differential equation system. The governing equations have been transformed into a set of ODS's using a similar scaling operation. Following this, the resulting ODEs are solved numerically through the BVP4c. The primary goal of this research is to analyze the results of varying the stretching ratio parameter ( λ ), Weissenberg parameter ( W e ), thermal radiation ( R d ), and Biot number ( B i ) for both pure T i O 2 and CuO + T i O 2 / E O hybrid nanofluid, on the velocity, temperature, drag force, heat transfer as well as entropy generation, and Bejan number was studied. A drop in velocity is observed with increasing values of the W e and upsurge in velocity for rising value of unsteady parameter ( A ), while increasing values of both of these parameters are associated with rising temperatures. Copper and titanium oxide nanoparticles are used to increase Engine oil (EO) thermal enactment, making it a more useful base fluid. Further, some significant industrial and engineering applications are related to the present problem discourse.
RESUMEN
In comparison to Newtonian fluids, non-Newtonian fluids have fascinating features in heat transportation. Here, newly type of Reiner-Rivlinnanoliquid flow over the revolving disk for viscous dissipation (VD) is being explored in a multiple-slip effect. The inclusion of gyrotactic microorganisms in the nanoliquid enhances the tendency of the nanoparticles. The idea of the intended model is enhanced by considering in the impact of activation energy, thermal radiative, heated convective conditions and entropy minimization. The system of nonlinear PDE is constructed into nonlinear ODE's by applying the von-Karman similarity method and later solved numerically using the BVP4c solver which is considered to study the complicated ordinary differential equations. TheInfluence of various parameters is elaborated and plotted physically through the graphical illustration. By contrasting the reported data in the restricted form to a previously published article, the accuracy of the current model has examined. The impact of a non-Newtonian fluid parameter over the velocity field appeared to showdpreciation in it. The results elucidate that when the wall slip coefficient is larger more torque is needed to maintain constant disk revaluation. Surface heat transmission and wall skin friction are computed for a wide variety of factors. These flows have several real world-applications, including modeling cases that occur in oceanography and geophysics, various industrial fields (such as lumber production).
RESUMEN
This work addresses a theoretical exploration of the water-based hybrid nanofluid flow over a nonlinear elongating surface. The flow is taken under the effects of Brownian motion and thermophoresis factors. Additionally, the inclined magnetic field is imposed in the present study to investigate the flow behavior at different angle of inclination. Homotopy analysis approach is used for the solution of modeled equations. Various physical factors, which are encountered during process of transformation, have been discussed physically. It is found that the magnetic factor and angle of inclination have reducing impacts on the velocity profiles of the nanofluid and hybrid nanofluid. The nonlinear index factor has direction relation with the velocity and temperature of the nanofluid and hybrid nanofluid flows. The thermal profiles of the nanofluid and hybrid nanofluid are augmented with the increasing thermophoretic and Brownian motion factors.CuO-H2Onanofluid flow has enhanced heat transfer rate thanAg-H2Onanofluid flow. On the other hand, theCuO-Ag/H2Ohybrid nanofluid has better thermal flow rate thanCuO-H2OandAg-H2Onanofluids. From this table it has noticed that, Nusselt number has increased by 4% for silver nanoparticles whereas for hybrid nanofluid this incrimination is about 15%, which depicts that Nusselt number is higher for hybrid nanoparticles.
RESUMEN
We formulated a Coronavirus (COVID-19) delay epidemic model with random perturbations, consisting of three different classes, namely the susceptible population, the infectious population, and the quarantine population. We studied the proposed problem to derive at least one unique solution in the positive feasweible region of the non-local solution. Sufficient conditions for the extinction and persistence of the proposed model are established. Our results show that the influence of Brownian motion and noise on the transmission of the epidemic is very large. We use the first-order stochastic Milstein scheme, taking into account the required delay of infected individuals.
Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Procesos Estocásticos , Simulación por Computador , COVID-19/epidemiología , Modelos Biológicos , Enfermedades Transmisibles/epidemiologíaRESUMEN
In the pump of different machines, the vacuum pump oil (VPO) is used as a lubricant. The heat rate transport mechanism is a significant requirement for all industries and engineering. The applications of VPO in discrete fields of industries and engineering fields are uranium enrichment, electron microscopy, radio pharmacy, ophthalmic coating, radiosurgery, production of most types of electric lamps, mass spectrometers, freeze-drying, and, etc. Therefore, in the present study, the nanoparticles are mixed up into the VPO base liquid for the augmentation of energy transportation. Further, the MHD flow of a couple stress nanoliquid with the applications of Hall current toward the rotating disk is discussed. The Darcy-Forchheimer along with porous medium is examined. The prevalence of viscous dissipation, thermal radiation, and Joule heating impacts are also considered. With the aid of Cattaneo-Christov heat-mass flux theory, the mechanism for energy and mass transport is deliberated. The idea of the motile gyrotactic microorganisms is incorporated. The existing problem is expressed as higher-order PDEs, which are then transformed into higher-order ODEs by employing the appropriate similarity transformations. For the analytical simulation of the modeled system of equations, the HAM scheme is utilized. The behavior of the flow profiles of the nanoliquid against various flow parameters has discoursed through the graphs. The outcomes from this analysis determined that the increment in a couple-stress liquid parameter reduced the fluid velocity. It is obtained that, the expansion in thermal and solutal relaxation time parameters decayed the nanofluid temperature and concentration. Further, it is examined that a higher magnetic field amplified the skin friction coefficients of the nanoliquid. Heat transport is increased through the rising of the radiation parameter.
Asunto(s)
Estro , Farmacia , Animales , Calor , Industrias , Simulación por ComputadorRESUMEN
The research of fluid containing nanoparticles for the heat transport characteristics is very famous because of its variety of real-life applications in various thermal systems. Although the thermal efficiency of the nanofluid was effective but still the nano scientists were trying to introduce some new advance class of fluid. Therefore, an advance class of fluid is developed by the dispersion of two different nano sized particles in the conventional base fluid known as "Hybrid nanofluid" which is more effective compared to simple nanofluids in many engineering and industrial applications. Therefore, motivated from the hybrid type of nanofluids in the current research we have taken two-dimensional laminar and steady flow of second grade fluid passing through porous plate. The engine oil base fluid is widely used fluid in the engineering and industrial problems. Keeping these applications in mind the engine oil is considered and two different nanoparticles Copper and aluminum oxide are added in ordered to get the required thermal characteristics. In addition to this the thermal radiation, chemical reaction, activation energy, Brownian motion and thermophoresis are also addressed during the current research. The present proposed higher-order PDE's is transformed to the non-linear system of ODE's. For the solution of the proposed high non-linear model HAM method is employed. As the hybrid nanofluid are highlighted on the second-grade fluid flow over a horizontal porous flat plate. During the present analysis and experimental study, it has been proved that the performance of hybrid nanofluid is efficient in many situations compared to nanofluid and regular fluid. For physical interpretation all the flow parameters are discussed through graphs. The impact of volume fraction is also addressed through graphs. Moreover, the comparative analysis between hybrid and nanofluid is carried out and found that hybrid nanofluid performed well as compared to nanofluid and regular fluid. The engineering quantities obtained from the present research have been presented in tables.
RESUMEN
Scientists and researchers are much interested in studying graphene and silver nanoparticles for the enhancement of heat transport due to their extensive variety of applications in different areas of industrial and engineering such as drug delivery, medical devices, ultra-light, excellent electrical conductivity, strong medical strength, health care, consumer, food, etc. Therefore, in the existing investigation, the MHD flow of a mixed convective hybrid nanoliquid with graphene and silver nanoparticles past a rotating disk is considered. Water and ethylene glycol (50:50) is used as a base liquid in the existing model. The mechanism for heat transport is computed with the existence of thermal radiation and thermal convective condition. Homogeneous and heterogeneous chemical reactions are assumed in the flow behavior. The mathematical formulation of the proposed problem is based on the nonlinear PDEs which are then transformed to nonlinear ODEs by manipulating the appropriate similarity transformation. The simulation of the existing problem has been performed with the help of the homotopy analysis technique. The outcomes of the different flow parameters on the velocities, temperature, concentration, skin friction coefficient, and Nusselt number of the hybrid nanofluid are attained via graphs and tables. Some significant results from the existing problem demonstrate that the rate of heat transport is greater for the thermal Biot number and nanoparticles volume fraction. Further, it is noticed that the velocity of the liquid particles becomes lower for a higher magnetic field parameter.
Asunto(s)
Grafito , Nanopartículas del Metal , Glicol de Etileno , Hidrodinámica , Modelos Teóricos , Plata , AguaRESUMEN
Hybrid nanofluids play a significant role in the advancement of thermal characteristics of pure fluids both at experimental and industrial levels. This work explores the mixed convective MHD micropolar hybrid nanofluid flow past a flat surface. The hybrid nanofluid flow is composed of alumina and silver nanoparticles whereas water is used as a base fluid. The plate has placed vertical in a permeable medium with suction and injection effects. Furthermore, viscous dissipation, thermal radiation and Joule heating effects are taken into consideration. Specific similarity variables have been used to convert the set of modeled equations to dimension-free form and then has solved by homotopy analysis method (HAM). It has revealed in this investigation that, fluid motion upsurge with growth in magnetic field effects and mixed convection parameter and decline with higher values of micropolar factor. Micro-rotational velocity of fluid is upsurge with higher values of micropolar factor. Thermal flow behavior is augmenting for expended values of magnetic effects, radiation factor, Eckert number and strength of heat source. The intensification in magnetic strength and mixed convection factors has declined the skin friction and has upsurge with higher values of micropolar parameter. The Nusselt number has increased with the intensification in magnetic effects, radiation factor and Eckert number.
RESUMEN
The purpose of this study is to evaluate the augmentation of thermal energy transfer in trihybrid Ellis nanofluid flow in the occurrence of magnetic dipole passes over a vertical surface. The ternary hybrid nanofluid is prepared by the dispersion of ternary nanoparticles (Al2O3, SiO2, and TiO2) in the Carreau Yasuda fluid. The velocity and heat transportation has been examined in the existence of the Darcy Forchhemier influence and heat source/sink. The phenomena of fluid flow have been mathematically designed for energy and fluid velocity in the form of a nonlinear partial differential equation (PDE)-based system. The system of PDEs is further refined to the set of ordinary differential equations via suitable similarity substitutions. The acquired dimensionless equations are numerically solved with the help of the HAM. It has been noticed that the energy contour is enhanced versus the variation of viscous dissipation and heat generation. A significant contribution of a magnetic dipole is observed to elevate the production of the thermal energy field, and an opposite trend is noticed versus the flow profile. The accumulation of Al2O3, SiO2, and TiO2 nanomaterials in the base fluid "engine oil" improves the velocity and energy profiles.