Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 11(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38922027

RESUMEN

Peste des petits ruminants (PPR) is an extremely transmissible viral disease caused by the PPR virus that impacts domestic small ruminants, namely sheep and goats. This study aimed to employ a methodical approach to evaluate the regional occurrence of PPR in small ruminants in Pakistan and the contributing factors that influence its prevalence. A thorough search was performed in various databases to identify published research articles between January 2004 and August 2023 on PPR in small ruminants in Pakistan. Articles were chosen based on specific inclusion and exclusion criteria. A total of 25 articles were selected from 1275 studies gathered from different databases. The overall pooled prevalence in Pakistan was calculated to be 51% (95% CI: 42-60), with heterogeneity I2 = 100%, τ2 = 0.0495, and p = 0. The data were summarized based on the division into five regions: Punjab, Baluchistan, KPK, Sindh, and GB and AJK. Among these, the pooled prevalence of PPR in Sindh was 61% (95% CI: 46-75), I2 = 100%, τ2 = 0.0485, and p = 0, while in KPK, it was 44% (95% CI: 26-63), I2 = 99%, τ2 = 0.0506, and p < 0.01. However, the prevalence of PPR in Baluchistan and Punjab was almost the same. Raising awareness, proper surveillance, and application of appropriate quarantine measures interprovincially and across borders must be maintained to contain the disease.

2.
Saudi J Biol Sci ; 30(10): 103783, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37680976

RESUMEN

Plants have always been the prime focus in medicine industries due to their enormous ethnobotanical uses and multitude of biological and therapeutic properties. In the current study, preliminary phytochemical composition, Total phenolic content (TPC), and total flavonoid content (TFC) with the antioxidant and antibacterial activity of hydroalcoholic extract and n-hexane, chloroform and n-butanol fractions of five selected medicinal plants [Tephrosia purpurea (L.) Pers., Lavandula stoechas L., Aesculus indica (Wall. ex Cambess.) Hook, Iris ensata Thunb., and Kalanchoe pinnata (Lam.) Pers.] from Pakistan, have been evaluated. TPC and TFC were determined by Folin-Ciocalteu's and AlCl3 methods respectively. The antioxidant activity was performed by DPPH, ABTS, FRAP, and CUPRAC while the antibacterial potential of these plants was determined by agar well diffusion assay. K. pinnata (Lam.) Pers. exhibited the highest TPC (695 ± 13.2 mg.GA.Eq.g-1DE ± SD) in n-butanol fraction and the highest TFC in its chloroform faction (615 ± 6.31 mg Q.Eq.g-1 DE ± SD). The n-butanol fraction and hydroalcoholic extract of I. ensata Thunb. exhibited strong antioxidant potential by DPPH and CUPRAC assays respectively, whereas K. pinnata (Lam.) Pers. n-butanol fraction exhibited the strongest reducing potential. The hydroalcoholic extract of all tested plants exhibited significant antibacterial activity against tested bacterial strains with ZI (12-18 mm). Conclusively, K. pinnata (Lam.) Pers. (Family: Crassulaceae) and I. ensataThunb. (Family: Iridaceae) exhibited the highest antioxidant and antibacterial potential. They can be explored for the isolation of phytoconstituents responsible for this potential and serve as a lead for the production of new natural antioxidants and antibacterial agents that can be used to cure various diseases.

3.
Mol Biol Rep ; 49(10): 9473-9480, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35925485

RESUMEN

BACKGROUND: The current study aimed to investigate the stimulatory effect of beta-adrenergic receptors (ß-ARs) on brain derived neurotropic factor (BDNF) and cAMP response element binding protein (CREB). METHODS: Human Müller cells were cultured in low and high glucose conditions. Cells were treated with xamoterol (selective agonist for ß1-AR), salmeterol (selective agonist for ß2-AR), isoproterenol (ß-ARs agonist) and propranolol (ß-ARs antagonist), at 20 µM concentration for 24 h. Western Blotting assay was performed for the gene expression analysis. DNA damage was evaluated by TUNEL assay. DCFH-DA assay was used to check the level of reactive oxygen species (ROS). Cytochrome C release was measured by ELISA. RESULTS: Xamoterol, salmeterol and isoproterenol showed no effect on Caspase-8 but it reduced the apoptosis and increased the expression of BDNF in Müller cells. A significant change in the expression of caspase-3 was observed in cells treated with xamoterol and salmeterol as compared to isoproterenol. Xamoterol, salmeterol and isoproterenol significantly decreased the reactive oxygen species (ROS) when treated for 24 hours. Glucose-induced cytochrome c release was disrupted in Müller cells. CONCLUSION: ß-ARs, stimulated by agonist play a protective role in hyperglycemic Müller cells, with the suppression of glucose-induced caspase-3 and cytochrome c release. B-Ars may directly mediate the gene expression of BDNF.


Asunto(s)
Células Ependimogliales , Propranolol , Agonistas Adrenérgicos beta/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocromos c/metabolismo , Células Ependimogliales/metabolismo , Glucosa/farmacología , Humanos , Isoproterenol/farmacología , Propranolol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Xinafoato de Salmeterol/farmacología , Xamoterol/farmacología
4.
Biomed Res Int ; 2022: 8010395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872856

RESUMEN

Human diseases are becoming more prevalent, necessitating the development of modalities to overcome the challenges of treating various disorders. In the current research, we analyzed the biomedicinal role of Typha domingensis which is an important medicinal plant. The species is traditionally used in the treatment of neurological disorders and skin malignancies. The chloroform (CFTD) and n-butanol fractions of T. domingensis (BFTD) were subjected to chemical profiling through the determination of total polyphenolic contents and GC-MS analysis. The oral toxicity test was applied to investigate the toxicity of the extracts. Antioxidant capacity was analyzed by four in vitro methods: DPPH, ABTS, FRAP, and CUPRAC. The pharmacological potential was evaluated through clinically significant enzyme inhibition assays, thrombolytic, and antimicrobial activities. In silico molecular docking approach was applied to confirm the role of T. domingensis against the enzymes. The polyphenolic quantification revealed that the BFTD was comparatively rich in total phenolic and flavonoid contents (97.14 milligrams gallic acid equivalent (mg GAE/g) and 362.5 milligrams quercetin equivalent per gram of dry extract (mg QE/g DE), respectively), as compared to the CFTD. The GC-MS analysis of the CFTD and BFTD resulted in the tentative identification of 67 and 29 compounds, respectively, with the major components of fatty acids and essential oil. The oral toxicity test revealed the safety and biocompatibility of CFTD and BFTD. Both the fractions showed promising antioxidant activity. Tyrosinase was found as the major enzyme inhibited by BFTD (78.67%) and CFTD (68.09%), whereas the standard kojic acid showed 85.58% inhibition. The inhibition results of acetylcholinesterase and butyrylcholinesterase by BFTD (71.65 and 60.79%, respectively) are higher than CFTD. Both the fractions were found active against various strains of bacteria. Furthermore, the molecular docking studies of the compounds showed a good docking score against all the docked enzymes among which deoxycaesaldekarin C was found with the highest binding affinities in comparison to the standard. The current study suggests that T. domingensis is nontoxic and can be a potential source of phytoconstituents with promising pharmacological potential.


Asunto(s)
Butirilcolinesterasa , Extractos Vegetales , Typhaceae , Acetilcolinesterasa , Antioxidantes/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Typhaceae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...