Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 302: 119055, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227849

RESUMEN

To elucidate the molecular composition and sources of organic aerosols in Central Asia, carbonaceous compounds, major ions, and 15 organic molecular tracers of total suspended particulates (TSP) were analyzed from September 2018 to August 2019 in Dushanbe, Tajikistan. Extremely high TSP concentrations (annual mean ± std: 211 ± 131 µg m-3) were observed, particularly during summer (seasonal mean ± std: 333 ± 183 µg m-3). Organic carbon (OC: 11.9 ± 7.0 µg m-3) and elemental carbon (EC: 5.1 ± 2.2 µg m-3) exhibited distinct seasonal variations from TSP, with the highest values occurring in winter. A high concentration of Ca2+ was observed (11.9 ± 9.2 µg m-3), accounting for 50.8% of the total ions and reflecting the considerable influence of dust on aerosols. Among the measured organic molecular tracers, levoglucosan was the predominant compound (632 ± 770 ng m-3), and its concentration correlated significantly with OC and EC during the study period. These findings highlight biomass burning (BB) as an important contributor to the particulate air pollution in Dushanbe. High ratios of levoglucosan to mannosan, and syringic acid to vanillic acid suggest that mixed hardwood and herbaceous plants were the main burning materials in the area, with softwood being a minor one. According to the diagnostic tracer ratio, OC derived from BB constituted a large fraction of the primary OC (POC) in ambient aerosols, accounting for an annual mean of nearly 30% and reaching 63% in winter. The annual contribution of fungal spores to POC was 10%, with a maximum of 16% in spring. Measurements of plant debris, accounting for 3% of POC, divulged that these have the same variation as fungal spores.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Tayikistán
2.
Environ Sci Technol ; 55(5): 2839-2846, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33555863

RESUMEN

Carbonates cause large uncertainties in determining the concentrations of organic carbon (OC) and elemental carbon (EC), as well as EC's light absorption characteristics, in arid locations, such as Central Asia. To investigate this influence, a comparison between acid (HCl)-treated and original total suspended particle (TSP) samples was conducted in Dushanbe, Tajikistan. According to the results, the OC and EC concentrations were overestimated by approximately 22.8 ± 33.8 and 32.5 ± 33.5%, with the actual values being 11.9 ± 3.0 and 5.13 ± 2.24 µg m-3, respectively. It was found that carbonates had a larger influence from May to October than during the other months, which was significantly correlated with the amount of TSPs on the filter. Furthermore, the mass absorption cross-section of EC (MACEC) increased from 4.52 ± 1.32 to 6.02 ± 1.49 m2 g-1; this indicated that carbonates can significantly decrease MACEC, thus causing an underestimation of approximately 23.9 ± 16.7%. This is the first study that quantifies the influence of carbonates on the light-absorbing abilities of EC.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Carbonatos , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Tayikistán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...