Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(9): e0310054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240855

RESUMEN

Metal-organic frameworks (MOFs) are structures with high surface area that can be used to remove heavy metals (HMs) efficiently from the environment. The effect of MOFs on HMs removal from contaminated soils has not been already investigated. Monometallic MOFs are easier to synthesize with high efficiency, and it is also important to compare their structures. In the present study, Zn-BTC, Cu-BTC, and Fe-BTC as three metal-trimesic acid MOFs were synthesized from the combination of zinc (Zn), copper (Cu), and iron (Fe) nitrates with benzene-1,3,5-tricarboxylic acid (H3BTC) by solvothermal method. BET analysis showed that the specific surface areas of the Zn-BTC, Cu-BTC, and Fe-BTC were 502.63, 768.39 and 92.4 m2g-1, respectively. The synthesized MOFs were added at the rates of 0.5 and 1% by weight to the soils contaminated with 100 mgkg-1 of Zn, nickel (Ni), lead (Pb), and cadmium (Cd). Then quinoa seeds were sown in the treated soils. According to the results, the uptakes of all four HMs by quinoa were the lowest in the Cu-BTC 1% treated pots and the lowest uptakes were observed for Pb in shoot and root (4.87 and 0.39, µgpot-1, respectively). The lowest concentration of metal extracted with EDTA in the post-harvest soils was for Pb (11.86 mgkg-1) in the Cu-BTC 1% treatment. The lowest metal pollution indices were observed after the application of Cu-BTC 1%, which were 20.29 and 11.53 for shoot and root, respectively. With equal molar ratios, highly porous and honeycomb-shaped structure, the most crystallized and the smallest constituent particle size (34.64 nm) were obtained only from the combination of Cu ions with H3BTC. The lowest porosity, crystallinity, and a semi-gel like feature was found for the Fe-BTC. The synthesized Cu-BTC showed the highest capacity of stabilizing HMs, especially Pb in the soil compared to the Zn-BTC and the Fe-BTC. The highly porous characteristic of the Cu-BTC can make the application of this MOF as a suitable environmental solution for the remediation of high Pb-contaminated soils.


Asunto(s)
Chenopodium quinoa , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/química , Metales Pesados/química , Chenopodium quinoa/química , Restauración y Remediación Ambiental/métodos , Ácidos Tricarboxílicos/química , Suelo/química , Estructuras Metalorgánicas/química
2.
Environ Sci Pollut Res Int ; 31(35): 48742-48757, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39037621

RESUMEN

Bassia indica (Wight) A. J. Scott is a fast-growing halophyte suitable for the remediation of saline lands on a large scale. However, no information is available regarding its phytoremediation potential for cadmium (Cd) alone or in combination with salinity. Besides evaluating phytoremediation, assessing micronutrient hemostasis as a crucial physiological insight into the mechanism involved in the tolerance of B. indica under saline soil contaminated with Cd was subjected. Under salinity stress, a considerable amount of sodium accumulates in the plant. Moreover, the accumulation of sodium increased by Cd stress levels. The increase in the exchangeable form of Cd in the rhizosphere in the presence of NaCl ions further elevated the Cd content in the plant tissues. For instance, compared to non-saline conditions, applying 2.5 and 5 g NaCl kg-1 to soil treated with 60 mg Cd kg-1 increased exchangeable Cd by 28.4 and 49.5% in rhizosphere soil, which led to increased cadmium content by 16.1 and 29.6% in the root (as a main part of Cd accumulation), respectively. Under most stress conditions, potassium homeostasis in the shoot remained undisturbed. It was observed that this plant could transfer an optimal level of potassium from the roots to the shoots at a moderate salinity level. Changes and the distribution of Cu and Zn levels followed a similar pattern in the plant, indicating a common regulation mechanism for these nutrients. Generally, the plant could maintain an appropriate level of Fe, Zn, and Cu ions under most stressed conditions. However, the level of Mn decreased significantly under severe stress levels. Growth parameters, tolerance index, and the values of translocation factor < 1 and shoot bioconcentration factor > 1 under 5 mg Cd kg-1 soil treatment at different salinity levels indicated that B. indica could mitigate the detrimental effect of Cd toxicity and tolerate the NaCl stress via a phytostabilizer mechanism. However, the shoot bioconcentration factor values were very close to one at other Cd levels. Therefore, considering the obtained evidence and the innate ability of B. indica to remediation salinity, this plant is still recommended, even for higher Cd levels (even until 30 mg kg-1), in the presence of salinity.


Asunto(s)
Biodegradación Ambiental , Cadmio , Contaminantes del Suelo , Suelo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Salinidad
3.
Sci Rep ; 14(1): 13225, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38851834

RESUMEN

Adsorption process plays an important role in the remediation of heavy metals (HMs) from wastewater. A laboratory trial was conducted to investigate effective parameters for improving the bio-adsorption removal of HMs. SEM, EDX, BET, and FTIR techniques were applied to characterize the calcined layer double hydroxide (Cal-LDH), pectin (PC), and Cal-LDH-PC composite prepared from Licorice pomace. The adsorption of zinc (Zn) cadmium, nickel (Ni) and lead (Pb) onto the most efficient sorbent was investigated using RSM methodology with operational factors such as concentration, reaction time, sorbent dose, and pH. The results related to FTIR showed that Cal-LDH-PC had the highest number of functional groups. Based on the SEM results Cal-LDH had a low surface area (9.36 m2 g-1) and a small pore size (9.22 nm). After the modification process (Cal-LDH-PC), the values of surface area and pore size increased by 13-fold (120 m2 g-1) and 1.5-fold (18 nm), respectively. Cal-LDH had high adsorption performance, more cavities, stability, various functional groups, and excessive carbon and oxygen content, which make it efficient and powerful in removing HMs from wastewater. The optimal condition for achieving the removal efficiency (RE%) values of metals was determined to be 80.79 mg L-1, 100 min, 0.167 g L-1, and 9 for concentration, reaction time, sorbent dose, and pH, respectively. Maximum adsorption capacity and RE (%) were 300 mg g-1 and 99% for Zn. According to the results concentration had a major impact on RE% (except for Ni), while for Ni, adsorbent dose had the most significant impact. The present study introduced Cal-LDH-PC prepared from Licorice pomace as a capable, useful and economical sorbent for HMs removal from polluted environments. Taguchi's statistical method is distinguished as an economic method with easier interpretation, while the RSM approach is more accurate, and it can also check the interaction of parameters.

4.
Sci Rep ; 14(1): 10684, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724636

RESUMEN

Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.


Asunto(s)
Carbón Orgánico , Lolium , Compuestos de Manganeso , Metales Pesados , Óxidos , Contaminantes del Suelo , Óxido de Zinc , Lolium/metabolismo , Lolium/crecimiento & desarrollo , Carbón Orgánico/química , Contaminantes del Suelo/metabolismo , Óxidos/química , Metales Pesados/metabolismo , Óxido de Zinc/química , Compuestos de Manganeso/química , Compuestos de Manganeso/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Nanopartículas/química , Disponibilidad Biológica , Suelo/química
5.
Int J Phytoremediation ; 20(2): 98-103, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-28604068

RESUMEN

This study was conducted to evaluate and compare the effectiveness of two organic amendments [poultry manure (PM) and poultry manure biochar (PMB)] for the degradation of petroleum hydrocarbons in contaminated soils by barley plant at three levels of total petroleum hydrocarbons (TPHs) during 5 months under greenhouse conditions. TPHs removal efficiency and microbial respiration were shown to be higher at soil-cultivated plant than at uncultivated soil and in lowest level of contamination rather than other levels of contamination and at organic amendment treatment than unamended soil. Soil microbial respiration and TPHs degradation in the rhizosphere of barley increased by 15.64 and 12.74% for PM-amended treatment and 28.07 and 26.83% for PMB-amended treatment, respectively, in the 4% TPHs level compared with unamended treatment. Comparison of two amendments showed that in PMB treatment soil, highest dry weight, microbial respiration, and TPHs degradation potential were observed.


Asunto(s)
Biodegradación Ambiental , Hordeum , Petróleo , Contaminantes del Suelo , Animales , Carbón Orgánico , Estiércol , Petróleo/metabolismo , Aves de Corral , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...