Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 191(1): 558-574, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36018261

RESUMEN

The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tachyglossidae , Animales , Red trans-Golgi/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tachyglossidae/metabolismo , Arabidopsis/metabolismo , Mutación/genética , Muerte Celular , Estrés del Retículo Endoplásmico , Enfermedades de las Plantas/genética , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Molecules ; 27(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408462

RESUMEN

An eco-friendly biogenic method for the synthesis of nickel oxide nanoparticles (NiONPs) using phytochemically rich Berberis pachyacantha leaf extract (BPL) was established. To achieve this purpose, 80 mL of BPL extract was used as a suitable reducing and capping agent for the synthesis of NiONPs. The synthesis of BPL-based nickel oxide nanoparticles (BPL@NiONPs) was confirmed using different microscopic and spectroscopic techniques: UV Visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), dynamic light scattering (DLS) and scanning electron microscopy (SEM) analysis. Spectroscopically, BPL-NiONPs was found with a pure elemental composition (oxygen and nickel), average size (22.53 nm) and rhombohedral structure with multiple functional groups (-OH group and Ni-O formation) on their surface. In the next step, the BPL extract and BPL@NiONPs were further investigated for various biological activities. As compared to BPL extract, BPL@NiONPs exhibited strong biological activities. BPL@NiONPs showed remarkable antioxidant activities in terms of 2,2-diphenyl-1-picrylhydrazyl (76.08%) and total antioxidant capacity (68.74%). Antibacterial action was found against Pseudomonas aeruginosa (27 mm), Staphylococcus aureus (20 mm) and Escherichia coli (19.67 mm) at 500 µg/mL. While antifungal potentials were shown against Alternaria alternata (81.25%), Fusarium oxysporum (42.86%) and Aspergillus niger (42%) at 1000 µg/mL. Similarly, dose-dependent cytotoxicity response was confirmed against brine shrimp with IC50 value (45.08 µg/mL). Additionally, BPL@NiONPs exhibited stimulatory efficacy by enhancing seed germination rate at low concentrations (31.25 and 62.5 µg/mL). In conclusion, this study depicted that BPL extract has important phytochemicals with remarkable antioxidant activities, which successfully reduced and stabilized the BPL@NiONPs. The overall result of this study suggested that BPL@NiONPs could be used as nanomedicines and nanofertilizers in biomedical and agrarian fields.


Asunto(s)
Berberis , Nanopartículas del Metal , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Escherichia coli , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
3.
Microsc Res Tech ; 85(4): 1410-1420, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34850481

RESUMEN

Pollen micromorphology is not only used to check the functional and structural evolution in plants but also to solve the taxonomic problem related to the classification of plants. Therefore, keeping in view the significance of pollen traits, selected taxa of the subfamily Caesalpiniaceae was collected from different geographical regions of Pakistan. The species were then analyzed under both light microscopy and scanning electron microscopy techniques to investigate the importance of micromorphological characters of pollen in the identification and classification of species. Great variation was recorded in equatorial shape, surface ornamentation, tectum, polar diameter, equatorial diameter, and exine thickness. However, little variation was observed in pollen type, polar shape, and fertility of pollen. The equatorial shape of five types was observed: prolate, prolate-spheroidal, spheroidal-subprolate, subspheroidal-prolate, and subspheroidal. Four types of surface ornamentation, psilate, granulate, clavate, and perforate, were recorded. Tectum of five types, intactate, reticulate regulate, medium reticulate, tactate, and striate, was observed. Sexine was thicker than nexine in all studied species. The largest polar diameter was observed in Caesalpinia pulcherrima 64.1 µm while the smallest in Parkinsonia aculeata 26.1 µm. The largest equatorial diameter was found in C. pulcherrima of 70.25 µm whereas the smallest in P. aculeata 27.57 µm. All the pollens analyzed were tricolporate. All studied species have a fertility ratio of more than 90%. A taxonomic key was developed to show the variation in pollen features and delimit species for the correct identification. In conclusion, the pollen traits were found useful to define species boundaries at various taxonomic ranks and will strengthen the taxonomy of this subfamily. Besides, this study also explored the palynological traits and their implication in the taxonomy of the subfamily Caesalpiniaceae.


Asunto(s)
Caesalpinia , Polen , Microscopía Electrónica de Rastreo , Pakistán , Polen/anatomía & histología
4.
Molecules ; 26(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799864

RESUMEN

Green synthesis of nanomaterials is advancing due to its ease of synthesis, inexpensiveness, nontoxicity and renewability. In the present study, an eco-friendly biogenic method was developed for the green synthesis of nickel oxide nanoparticles (NiONPs) using phytochemically rich Berberis balochistanica stem (BBS) extract. The BBS extract was rich in phenolics, flavonoids and berberine. These phytochemicals successfully reduced and stabilised the NiNO3 (green) into NiONPs (greenish-gray). BBS-NiONPs were confirmed by using UV-visible spectroscopy (peak at 305 nm), X-ray diffraction (size of 31.44 nm), Fourier transform infrared spectroscopy (identified -OH group and Ni-O formation), energy dispersive spectroscopy (showed specified elemental nature) and scanning electron microscopy (showed rhombohedral agglomerated shape). BBS-NiONPs were exposed to multiple in vitro bioactivities to ascertain their beneficial biological applications. They exhibited strong antioxidant activities: total antioxidant capacity (64.77%) and 2, 2-diphenyl-1-picrylhydrazyl (71.48%); and cytotoxic potential: Brine shrimp cytotoxicity assay with IC50 (10.40 µg/mL). BBS-NiONPs restricted the bacterial and fungal pathogenic growths at 1000, 500 and 100 µg/mL. Additionally, BBS-NiONPs showed stimulatory efficacy by enhancing seed germination rate and seedling growth at 31.25 and 62.5 µg/mL. In aggregate, BBS extract has a potent antioxidant activity which makes the green biosynthesis of NiONPs easy, economical and safe. The biochemical potential of BBS-NiONPs can be useful in various biomedical and agricultural fields.


Asunto(s)
Berberis/metabolismo , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Antibacterianos/química , Antioxidantes/química , Bacterias , Berberis/fisiología , Pruebas de Sensibilidad Microbiana , Nanotecnología/métodos , Níquel/química , Tamaño de la Partícula , Fitoquímicos/química , Extractos Vegetales/química , Espectrometría por Rayos X/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
5.
Microsc Res Tech ; 84(9): 2004-2016, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33763916

RESUMEN

In current report, nickel oxide nanoparticles (NiONPs) were synthesized using leaf extract of Berberis balochistanica (BB) an endemic medicinal plant. The BB leaves extract act as a strong reducing, stabilizing, and capping agent in the synthesis of BB@NiONPs. Further, BB@NiONPs were characterized using Uv-visible spectroscopy (UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and average size was calculated ~21.7 nm). Multiple in vitro biological activities were performed to determine their therapeutic potentials. The BB@NiONPs showed strong antioxidant activities in term of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC) with scavenging potential of 69.98 and 59.59% at 200 µg/ml, respectively. The antibacterial and antifungal testes were examined using different bacterial and fungal strains and dose-dependent inhibition response was reported. Laterally, cytotoxic and phytotoxic activities were studied using brine shrimp and radish seeds. The result determined potential cytotoxic activity with LD50 value (49.10 µg/ml) and outstanding stimulatory effect of BB@NiONPs on seed germination at lower concentrations as compared to control. Overall, result concluded that biosynthesis of NiONPs using leaf extracts of Berberis balochistanica is cheap, easy, and safe method and could be used in biomedical and agriculture field as nanomedicine and nano fertilizer.


Asunto(s)
Berberis , Nanopartículas del Metal , Antibacterianos/farmacología , Tecnología Química Verde , Níquel , Extractos Vegetales/farmacología , Hojas de la Planta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Plant Genome ; 14(1): e20066, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615748

RESUMEN

Stripe or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici is a major threat to bread wheat production worldwide. The breakdown in resistance of certain major genes and newly emerging aggressive races of stripe rusts pose serious concerns in all main wheat growing areas of the world. To identify new sources of resistance and associated QTL for effective utilization in future breeding programs an association mapping (AM) panel comprising of 600 bread wheat landraces collected from eight different countries conserved at ICARDA gene bank were evaluated for seedling and adult plant resistance against the PstS2 and Warrior races of stripe rust at the Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey during 2016, 2018 and 2019. A set of 25,169 informative SNP markers covering the whole genome were used to examine the population structure, linkage disequilibrium and marker-trait associations in the AM panel. The genome-wide association study (GWAS) was carried out using a Mixed Linear Model (MLM). We identified 47 SNP markers across 19 chromosomes with significant SNP-trait associations for both seedling stage and adult plant resistance. The threshold of significance for all SNP-trait associations was determined by the false discovery rate (q) ≤ 0.05. Three genomic regions (QYr.1D_APR, QYr.3A_seedling and QYr.7D_seedling) identified in this study do not correspond to previously reported Yr genes or QTL, suggesting new genomic regions for stripe rust resistance.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Pan , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Puccinia , Sitios de Carácter Cuantitativo , Triticum/genética , Turquía
7.
Gene ; 768: 145301, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33181261

RESUMEN

Despite the economic importance of P utilization efficiency, information on genetic factors underlying this trait remains elusive. To address that, we performed a genome-wide association study in a spring wheat diversity panel ranging from landraces to elite varieties. We evaluated the phenotype variation for P utilization efficiency in controlled conditions and genotype variation using wheat 90 K SNP array. Phenotype variables were transformed into a smaller set of uncorrelated principal components that captured the most important variation data. We identified two significant loci associated with both P utilization efficiency and the 1st principal component on chromosomes 3A and 4A: qPE1-3A and qPE2-4A. Annotation of genes at these loci revealed 53 wheat genes, among which 6 were identified in significantly enriched pathways. The expression pattern of these 6 genes indicated that TraesCS4A02G481800, involved in pyruvate metabolism and TCA cycle, had a significantly higher expression in the P efficient variety under limited P conditions. Further characterization of these loci and candidate genes can help stimulate P utilization efficiency in wheat.


Asunto(s)
Fósforo/metabolismo , Triticum/genética , Triticum/metabolismo , Alelos , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Desequilibrio de Ligamiento/genética , Fenotipo , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal/métodos , Sitios de Carácter Cuantitativo/genética
8.
Plant Genome ; 13(2): e20030, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33016603

RESUMEN

Cadmium (Cd) toxicity is a serious threat to future food security and health safety. To identify genetic factors contributing to Cd uptake in wheat, we conducted a genome-wide association study with genotyping from 90K SNP array. A spring wheat diversity panel was planted under normal conditions and Cd stress (50 mg Cd/kg soil). The impact of Cd stress on agronomic traits ranged from a reduction of 16% in plant height to 93% in grain iron content. Individual genotypes showed a considerable variation for Cd uptake and translocation subdividing the panel into three groups: (1) hyper-accumulators (i.e. high Leaf_Cd and low Seed_Cd ), (2) hyper-translocators (i.e. low Leaf_Cd and high Seed_Cd ), and (3) moderate lines (i.e. low Leaf_Cd and low Seed_Cd ). Two lines (SKD-1 and TD-1) maintained an optimum grain yield under Cd stress and were therefore considered as Cd resistant lines. Genome-wide association identified 179 SNP-trait associations for various traits including 16 for Cd uptake at a significance level of P < .001. However, only five SNPs were significant after applying multiple testing correction. These loci were associated with seed-cadmium, grain-iron, and grain-zinc: qSCd-1A, qSCd-1D, qZn-2B1, qZn-2B2, and qFe-6D. These five loci had not been identified in the previously reported studies for Cd uptake in wheat. These loci and the underlying genes should be further investigated using molecular biology techniques to identify Cd resistant genes in wheat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Cadmio , Grano Comestible/genética , Fenotipo , Triticum/genética
9.
G3 (Bethesda) ; 10(9): 3201-3211, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32646913

RESUMEN

Chlorophyll biosynthesis and chloroplast development are crucial to photosynthesis and plant growth, but their regulatory mechanism remains elusive in many crop species. We isolated a Brassica napus yellow-virescent leaf (yvl) mutant, which exhibited yellow-younger-leaf and virescent-older-leaf with decreased chlorophyll accumulation and delayed chloroplast development. We mapped yvl locus to a 70-kb interval between molecular markers yvl-O10 and InDel-O6 on chromosome A03 in BC2F2 population using whole genome re-sequencing and bulked segregant analysis. The mutant had a 'C' to 'T' substitution in the coding sequence of BnaA03.CHLH, which encodes putative H subunit of Mg-protoporphyrin IX chelatase (CHLH). The mutation resulted in an imperfect protein structure and reduced activity of CHLH. It also hampered the plastid encoded RNA polymerase which transcribes regulatory genes of photosystem II and I. Consequently, the chlorophyll a/b and carotenoid contents were reduced and the chloroplast ultrastructure was degraded in yvl mutant. These results explain that a single nucleotide mutation in BnaA03.CHLH impairs PEP activity to disrupt chloroplast development and chlorophyll biosynthesis in B. napus.


Asunto(s)
Brassica napus , Brassica napus/genética , Clorofila , Clorofila A , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta , Proteínas de Plantas/genética
10.
Front Plant Sci ; 11: 70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133017

RESUMEN

Potassium use efficiency, a complex trait, directly impacts the yield potential of crop plants. Low potassium efficiency leads to a high use of fertilizers, which is not only farmer unfriendly but also deteriorates the environment. Genome-wide association studies (GWAS) are widely used to dissect complex traits. However, most studies use single-locus one-dimensional GWAS models which do not provide true information about complex traits that are controlled by multiple loci. Here, both single-locus GWAS (MLM) and multi-locus GWAS (pLARmEB, FASTmrMLM, mrMLM, FASTmrEMMA) models were used with genotyping from 90 K Infinium SNP array and phenotype derived from four normal and potassium-stress environments, which identified 534 significant marker-trait associations (MTA) for agronomic and potassium related traits: pLARmEB = 279, FASTmrMLM = 213, mrMLM = 35, MLM = 6, FASTmrEMMA = 1. Further screening of these MTA led to the detection of eleven stable loci: q1A, q1D, q2B-1, q2B-2, q2D, q4D, q5B-1, q5B-2, q5B-3, q6D, and q7A. Moreover, Meta-QTL (MQTL) analysis of four independent QTL studies for potassium deficiency in bread wheat located 16 MQTL on 13 chromosomes. One locus identified in this study (q5B-1) colocalized with an MQTL (MQTL_11 ), while the other ten loci were novel associations. Gene ontology of these loci identified 20 putative candidate genes encoding functional proteins involved in key pathways related to stress tolerance, sugar metabolism, and nutrient transport. These findings provide potential targets for breeding potassium stress resistant wheat cultivars and advocate the advantages of multi-locus GWAS models for studying complex traits.

11.
J Food Sci ; 85(1): 14-20, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31869858

RESUMEN

Salinity has drastic effects on plant growth and productivity and is one of the major factors responsible for crop yield losses throughout the agricultural soils of the world. The mechanisms of salinity tolerance in plants are regulated by a set of inherent multigenes and prevalent environmental factors, which bring about a myriad of metabolic changes in each plant part. The stress-induced metabolic changes in the rice plant have been intensively studied, but extensively in plant parts such as stem, leaf, and root. However, little information exists in the literature about such stress-induced architectural and physiological changes in rice grain, a premier staple food of a large proportion of human population. Thus, the current review comprehensively describes the effects of salinity stress on rice grain composition including changes in carbohydrate, protein, fat, and mineral contents. Elucidation of salinity induced changes in rice grain composition would help to understand whether or not a nutritious and healthy staple food is available to human population from rice grown under saline environments.


Asunto(s)
Oryza/fisiología , Semillas/química , Oryza/química , Oryza/crecimiento & desarrollo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Estrés Salino , Semillas/crecimiento & desarrollo , Semillas/fisiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA