Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496463

RESUMEN

Somatic genome editing in mouse models has increased our understanding of the in vivo effects of genetic alterations in areas ranging from neuroscience to cancer biology and beyond. However, existing models have been restricted in their ability to create multiple targeted edits, which has limited investigations into complex genetic interactions that underlie development, homeostasis, and disease. To accelerate and expand the generation of complex genotypes in somatic cells, we generated transgenic mice with Cre-regulated and constitutive expression of enhanced Acidaminococcus sp. Cas12a (enAsCas12a), an RNA-guided endonuclease with unique attributes that enable simple targeting of multiple genes. In these mice, enAsCas12a-mediated somatic genome editing robustly generated compound genotypes, as exemplified by the initiation of oncogene-negative lung adenocarcinoma, small-cell lung cancer, and a canonical genotype of pancreatic ductal adenocarcinoma, all driven by homozygous inactivation of trios of tumor suppressor genes. We further integrated these modular crRNA arrays with clonal barcoding to quantify the size and number of tumors with each array. These Cas12a alleles will enable the rapid generation of disease models and broadly facilitate the high-throughput investigation of coincident genomic alterations in somatic cells in vivo .

2.
Oncogene ; 43(7): 457-469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191672

RESUMEN

Small cell lung cancer (SCLC) remains the most fatal form of lung cancer, with patients in dire need of new and effective therapeutic approaches. Modeling SCLC in an immunocompetent host is essential for understanding SCLC pathogenesis and ultimately discovering and testing new experimental therapeutic strategies. Human SCLC is characterized by near universal genetic loss of the RB1 and TP53 tumor suppressor genes. Twenty years ago, the first genetically-engineered mouse model (GEMM) of SCLC was generated using conditional deletion of both Rb1 and Trp53 in the lungs of adult mice. Since then, several other GEMMs of SCLC have been developed coupling genomic alterations found in human SCLC with Rb1 and Trp53 deletion. Here we summarize how GEMMs of SCLC have contributed significantly to our understanding of the disease in the past two decades. We also review recent advances in modeling SCLC in mice that allow investigators to bypass limitations of the previous generation of GEMMs while studying new genes of interest in SCLC. In particular, CRISPR/Cas9-mediated somatic gene editing can accelerate how new genes of interest are functionally interrogated in SCLC tumorigenesis. Notably, the development of allograft models and precancerous precursor models from SCLC GEMMs provides complementary approaches to GEMMs to study tumor cell-immune microenvironment interactions and test new therapeutic strategies to enhance response to immunotherapy. Ultimately, the new generation of SCLC models can accelerate research and help develop new therapeutic strategies for SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pulmón/patología , Edición Génica , Transformación Celular Neoplásica , Microambiente Tumoral/genética
3.
Cancer Res ; 84(2): 226-240, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37963187

RESUMEN

Metastasis is a major cause of morbidity and mortality in patients with cancer, highlighting the need to identify improved treatment and prevention strategies. Previous observations in preclinical models and tumors from patients with small cell lung cancer (SCLC), a fatal form of lung cancer with high metastatic potential, identified the transcription factor NFIB as a driver of tumor growth and metastasis. However, investigation into the requirement for NFIB activity for tumor growth and metastasis in relevant in vivo models is needed to establish NFIB as a therapeutic target. Here, using conditional gene knockout strategies in genetically engineered mouse models of SCLC, we found that upregulation of NFIB contributes to tumor progression, but NFIB is not required for metastasis. Molecular studies in NFIB wild-type and knockout tumors identified the pioneer transcription factors FOXA1/2 as candidate drivers of metastatic progression. Thus, while NFIB upregulation is a frequent event in SCLC during tumor progression, SCLC tumors can employ NFIB-independent mechanisms for metastasis, further highlighting the plasticity of these tumors. SIGNIFICANCE: Small cell lung cancer cells overcome deficiency of the prometastatic oncogene NFIB to gain metastatic potential through various molecular mechanisms, which may represent targets to block progression of this fatal cancer type.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción NFI , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Ratones , Neoplasias Pulmonares/patología , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Oncogenes , Carcinoma Pulmonar de Células Pequeñas/patología
4.
Cell Chem Biol ; 31(2): 234-248.e13, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37963466

RESUMEN

Ferroptosis is a non-apoptotic form of cell death that can be triggered by inhibiting the system xc- cystine/glutamate antiporter or the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). We have investigated how cell cycle arrest caused by stabilization of p53 or inhibition of cyclin-dependent kinase 4/6 (CDK4/6) impacts ferroptosis sensitivity. Here, we show that cell cycle arrest can enhance sensitivity to ferroptosis induced by covalent GPX4 inhibitors (GPX4i) but not system xc- inhibitors. Greater sensitivity to GPX4i is associated with increased levels of oxidizable polyunsaturated fatty acid-containing phospholipids (PUFA-PLs). Higher PUFA-PL abundance upon cell cycle arrest involves reduced expression of membrane-bound O-acyltransferase domain-containing 1 (MBOAT1) and epithelial membrane protein 2 (EMP2). A candidate orally bioavailable GPX4 inhibitor increases lipid peroxidation and shrinks tumor volumes when combined with a CDK4/6 inhibitor. Thus, cell cycle arrest may make certain cancer cells more susceptible to ferroptosis in vivo.


Asunto(s)
Ferroptosis , Neoplasias , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Muerte Celular , Peroxidación de Lípido , Ácidos Grasos Insaturados/metabolismo , Puntos de Control del Ciclo Celular , Neoplasias/tratamiento farmacológico
5.
Bioeng Transl Med ; 8(6): e10573, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023717

RESUMEN

The cytokine interleukin (IL)-11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL-11 variant that binds with higher affinity to the IL-11 receptor and stimulates enhanced receptor-mediated cell signaling. Introduction of two additional point mutations ablates IL-11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high-affinity receptor antagonist. Unlike wild-type IL-11, this engineered variant potently blocks IL-11-mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.

6.
Proteomics ; : e2300030, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926756

RESUMEN

Small cell lung cancer (SCLC) tumors are made up of distinct cell subpopulations, including neuroendocrine (NE) and non-neuroendocrine (non-NE) cells. While secreted factors from non-NE SCLC cells have been shown to support the growth of the NE cells, the underlying molecular factors are not well understood. Here, we show that exosome-type small extracellular vesicles (SEVs) secreted from non-NE SCLC cells promote adhesion and survival of NE SCLC cells. Proteomic analysis of purified SEVs revealed that extracellular matrix (ECM) proteins and integrins are highly enriched in SEVs of non-NE cells whereas nucleic acid-binding proteins are enriched in SEVs purified from NE cells. Addition of select purified ECM proteins identified in purified extracellular vesicles (EVs), specifically fibronectin, laminin 411, and laminin 511, were able to substitute for the role of non-NE-derived SEVs in promoting adhesion and survival of NE SCLC cells. Those same proteins were differentially expressed by human SCLC subtypes. These data suggest that ECM-carrying SEVs secreted by non-NE cells play a key role in supporting the growth and survival of NE SCLC cells.

7.
Nat Cell Biol ; 25(10): 1506-1519, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37783795

RESUMEN

Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Astrocitos/patología , Neoplasias Pulmonares/metabolismo , Ecosistema , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Microambiente Tumoral
9.
PLoS Comput Biol ; 19(7): e1011215, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406008

RESUMEN

Mechanistic models of biological processes can explain observed phenomena and predict responses to a perturbation. A mathematical model is typically constructed using expert knowledge and informal reasoning to generate a mechanistic explanation for a given observation. Although this approach works well for simple systems with abundant data and well-established principles, quantitative biology is often faced with a dearth of both data and knowledge about a process, thus making it challenging to identify and validate all possible mechanistic hypothesis underlying a system behavior. To overcome these limitations, we introduce a Bayesian multimodel inference (Bayes-MMI) methodology, which quantifies how mechanistic hypotheses can explain a given experimental datasets, and concurrently, how each dataset informs a given model hypothesis, thus enabling hypothesis space exploration in the context of available data. We demonstrate this approach to probe standing questions about heterogeneity, lineage plasticity, and cell-cell interactions in tumor growth mechanisms of small cell lung cancer (SCLC). We integrate three datasets that each formulated different explanations for tumor growth mechanisms in SCLC, apply Bayes-MMI and find that the data supports model predictions for tumor evolution promoted by high lineage plasticity, rather than through expanding rare stem-like populations. In addition, the models predict that in the presence of cells associated with the SCLC-N or SCLC-A2 subtypes, the transition from the SCLC-A subtype to the SCLC-Y subtype through an intermediate is decelerated. Together, these predictions provide a testable hypothesis for observed juxtaposed results in SCLC growth and a mechanistic interpretation for tumor treatment resistance.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Teorema de Bayes , Modelos Teóricos , Neoplasias Pulmonares/patología
10.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37502927

RESUMEN

Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation. Ferroptosis can be induced by system xc- cystine/glutamate antiporter inhibition or by direct inhibition of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). The regulation of ferroptosis in response to system xc- inhibition versus direct GPX4 inhibition may be distinct. Here, we show that cell cycle arrest enhances sensitivity to ferroptosis triggered by GPX4 inhibition but not system xc- inhibition. Arrested cells have increased levels of oxidizable polyunsaturated fatty acid-containing phospholipids, which drives sensitivity to GPX4 inhibition. Epithelial membrane protein 2 (EMP2) expression is reduced upon cell cycle arrest and is sufficient to enhance ferroptosis in response to direct GPX4 inhibition. An orally bioavailable GPX4 inhibitor increased markers of ferroptotic lipid peroxidation in vivo in combination with a cell cycle arresting agent. Thus, responses to different ferroptosis-inducing stimuli can be regulated by cell cycle state.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37460156

RESUMEN

Cell division is obligatory to tumor growth. However, both cancer cells and noncancer cells in tumors can be found in distinct stages of the cell cycle, which may inform the growth potential of these tumors, their propensity to metastasize, and their response to therapy. Hence, it is of utmost importance to monitor the cell cycle of tumor cells. Here we discuss well-established methods and new genetic advances to track the cell cycle of tumor cells in mouse models of human cancer. We also review recent genetic studies investigating the role of the cell-cycle machinery in the growth of tumors in vivo, with a focus on the machinery regulating the G1/S transition of the cell cycle.

12.
J Thorac Oncol ; 18(10): 1362-1385, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37455012

RESUMEN

INTRODUCTION: Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs. METHODS: We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. RESULTS: We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin ß1-dependent process. CONCLUSIONS: We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.


Asunto(s)
Neoplasias Pulmonares , Animales , Ratones , Humanos , Neoplasias Pulmonares/patología , Neovascularización Patológica/genética , Transdiferenciación Celular , Línea Celular Tumoral
14.
Cancer Discov ; 13(7): 1572-1591, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37062002

RESUMEN

Small cell lung cancer (SCLC) is a recalcitrant neuroendocrine carcinoma with dismal survival outcomes. A major barrier in the field has been the relative paucity of human tumors studied. Here we provide an integrated analysis of 3,600 "real-world" SCLC cases. This large cohort allowed us to identify new recurrent alterations and genetic subtypes, including STK11-mutant tumors (1.7%) and TP53/RB1 wild-type tumors (5.5%), as well as rare cases that were human papillomavirus-positive. In our cohort, gene amplifications on 4q12 are associated with increased overall survival, whereas CCNE1 amplification is associated with decreased overall survival. We also identify more frequent alterations in the PTEN pathway in brain metastases. Finally, profiling cases of SCLC containing oncogenic drivers typically associated with NSCLC demonstrates that SCLC transformation may occur across multiple distinct molecular cohorts of NSCLC. These novel and unsuspected genetic features of SCLC may help personalize treatment approaches for this fatal form of cancer. SIGNIFICANCE: Minimal changes in therapy and survival outcomes have occurred in SCLC for the past four decades. The identification of new genetic subtypes and novel recurrent mutations as well as an improved understanding of the mechanisms of transformation to SCLC from NSCLC may guide the development of personalized therapies for subsets of patients with SCLC. This article is highlighted in the In This Issue feature, p. 1501.


Asunto(s)
Carcinoma Neuroendocrino , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/patología , Neoplasias Pulmonares/patología , Mutación , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma Neuroendocrino/genética
15.
Cell Rep ; 42(1): 111990, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640300

RESUMEN

Small cell lung cancer (SCLC) is a lethal form of lung cancer. Here, we develop a quantitative multiplexed approach on the basis of lentiviral barcoding with somatic CRISPR-Cas9-mediated genome editing to functionally investigate candidate regulators of tumor initiation and growth in genetically engineered mouse models of SCLC. We found that naphthalene pre-treatment enhances lentiviral vector-mediated SCLC initiation, enabling high multiplicity of tumor clones for analysis through high-throughput sequencing methods. Candidate drivers of SCLC identified from a meta-analysis across multiple human SCLC genomic datasets were tested using this approach, which defines both positive and detrimental impacts of inactivating 40 genes across candidate pathways on SCLC development. This analysis and subsequent validation in human SCLC cells establish TSC1 in the PI3K-AKT-mTOR pathway as a robust tumor suppressor in SCLC. This approach should illuminate drivers of SCLC, facilitate the development of precision therapies for defined SCLC genotypes, and identify therapeutic targets.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Ratones , Animales , Humanos , Carcinoma Pulmonar de Células Pequeñas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pulmonares/patología , Genes Supresores de Tumor , Genómica
16.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711554

RESUMEN

Neural activity is increasingly recognized as a critical regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth both through paracrine mechanisms and through electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses, while perisynaptic neurotransmitter signaling drives breast cancer brain metastasis growth. Outside of the CNS, innervation of tumors such as prostate, breast, pancreatic and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression. However, the extent to which the nervous system regulates lung cancer progression, either in the lung or when metastatic to brain, is largely unexplored. Small cell lung cancer (SCLC) is a lethal high-grade neuroendocrine tumor that exhibits a strong propensity to metastasize to the brain. Here we demonstrate that, similar to glioma, metastatic SCLC cells in the brain co-opt neuronal activity-regulated mechanisms to stimulate growth and progression. Optogenetic stimulation of cortical neuronal activity drives proliferation and invasion of SCLC brain metastases. In the brain, SCLC cells exhibit electrical currents and consequent calcium transients in response to neuronal activity, and direct SCLC cell membrane depolarization is sufficient to promote the growth of SCLC tumors. In the lung, vagus nerve transection markedly inhibits primary lung tumor formation, progression and metastasis, highlighting a critical role for innervation in overall SCLC initiation and progression. Taken together, these studies illustrate that neuronal activity plays a crucial role in dictating SCLC pathogenesis in both primary and metastatic sites.

17.
iScience ; 25(12): 105603, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36483011

RESUMEN

Tumor heterogeneity plays a critical role in tumor development and response to treatment. In small-cell lung cancer (SCLC), intratumoral heterogeneity is driven in part by the Notch signaling pathway, which reprograms neuroendocrine cancer cells to a less/non-neuroendocrine state. Here we investigated the atypical Notch ligand DLL3 as a biomarker of the neuroendocrine state and a regulator of cell-cell interactions in SCLC. We first built a mathematical model to predict the impact of DLL3 expression on SCLC cell populations. We next tested this model using a single-chain variable fragment (scFv) to track DLL3 expression in vivo and a new mouse model of SCLC with inducible expression of DLL3 in SCLC tumors. We found that high levels of DLL3 promote the expansion of a SCLC cell population with lower expression levels of both neuroendocrine and non-neuroendocrine markers. This work may influence how DLL3-targeting therapies are used in SCLC patients.

18.
Nat Cancer ; 3(11): 1351-1366, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411318

RESUMEN

Radiation therapy is a mainstay of cancer treatment but does not always lead to complete tumor regression. Here we combine radiotherapy with blockade of the 'don't-eat-me' cell-surface molecule CD47 in small cell lung cancer (SCLC), a highly metastatic form of lung cancer. CD47 blockade potently enhances the local antitumor effects of radiotherapy in preclinical models of SCLC. Notably, CD47 blockade also stimulates off-target 'abscopal' effects inhibiting non-irradiated SCLC tumors in mice receiving radiation. These abscopal effects are independent of T cells but require macrophages that migrate into non-irradiated tumor sites in response to inflammatory signals produced by radiation and are locally activated by CD47 blockade to phagocytose cancer cells. Similar abscopal antitumor effects were observed in other cancer models treated with radiation and CD47 blockade. The systemic activation of antitumor macrophages following radiotherapy and CD47 blockade may be particularly important in patients with cancer who suffer from metastatic disease.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Ratones , Animales , Antígeno CD47 , Macrófagos , Fagocitosis , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico
19.
Cancer Cell ; 40(11): 1423-1439.e11, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240778

RESUMEN

Intratumoral heterogeneity is a seminal feature of human tumors contributing to tumor progression and response to treatment. Current technologies are still largely unsuitable to accurately track phenotypes and clonal evolution within tumors, especially in response to genetic manipulations. Here, we developed epitopes for imaging using combinatorial tagging (EpicTags), which we coupled to multiplexed ion beam imaging (EpicMIBI) for in situ tracking of barcodes within tissue microenvironments. Using EpicMIBI, we dissected the spatial component of cell lineages and phenotypes in xenograft models of small cell lung cancer. We observed emergent properties from mixed clones leading to the preferential expansion of clonal patches for both neuroendocrine and non-neuroendocrine cancer cell states in these models. In a tumor model harboring a fraction of PTEN-deficient cancer cells, we observed a non-autonomous increase of clonal patch size in PTEN wild-type cancer cells. EpicMIBI facilitates in situ interrogation of cell-intrinsic and cell-extrinsic processes involved in intratumoral heterogeneity.


Asunto(s)
Neoplasias , Humanos , Epítopos , Neoplasias/patología , Evolución Clonal , Células Clonales/patología , Linaje de la Célula , Microambiente Tumoral
20.
Front Cell Dev Biol ; 10: 965595, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092730

RESUMEN

Every type of cell in an animal maintains a specific size, which likely contributes to its ability to perform its physiological functions. While some cell size control mechanisms are beginning to be elucidated through studies of cultured cells, it is unclear if and how such mechanisms control cell size in an animal. For example, it was recently shown that RB, the retinoblastoma protein, was diluted by cell growth in G1 to promote size-dependence of the G1/S transition. However, it remains unclear to what extent the RB-dilution mechanism controls cell size in an animal. We therefore examined the contribution of RB-dilution to cell size control in the mouse liver. Consistent with the RB-dilution model, genetic perturbations decreasing RB protein concentrations through inducible shRNA expression or through liver-specific Rb1 knockout reduced hepatocyte size, while perturbations increasing RB protein concentrations in an Fah -/- mouse model increased hepatocyte size. Moreover, RB concentration reflects cell size in G1 as it is lower in larger G1 hepatocytes. In contrast, concentrations of the cell cycle activators Cyclin D1 and E2f1 were relatively constant. Lastly, loss of Rb1 weakened cell size control, i.e., reduced the inverse correlation between how much cells grew in G1 and how large they were at birth. Taken together, our results show that an RB-dilution mechanism contributes to cell size control in the mouse liver by linking cell growth to the G1/S transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA