RESUMEN
BACKGROUND: Despite evidence supporting use of fractional flow reserve (FFR) and instantaneous waves-free ratio (iFR) to improve outcome of patients undergoing coronary angiography (CA) and percutaneous coronary intervention, such techniques are still underused in clinical practice due to economic and logistic issues. OBJECTIVES: We aimed to develop an artificial intelligence (AI)-based application to compute FFR and iFR from plain CA. METHODS AND RESULTS: Consecutive patients performing FFR or iFR or both were enrolled. A specific multi-task deep network exploiting 2 projections of the coronary of interest from standard CA was appraised. Accuracy of prediction of FFR/iFR of the AI model was the primary endpoint, along with sensitivity and specificity. Prediction was tested both for continuous values and for dichotomous classification (positive/negative) for FFR or iFR. Subgroup analyses were performed for FFR and iFR.A total of 389 patients from 5 centers were enrolled. Mean age was 67.9 ± 9.6 and 39.2% of patients were admitted for acute coronary syndrome. Overall, the accuracy was 87.3% (81.2-93.4%), with a sensitivity of 82.4% (71.9-96.4%) and a specificity of 92.2% (90.4-93.9%). For FFR, accuracy was 84.8% (77.8-91.8%), with a sensitivity of 81.9% (69.4-94.4%) and a specificity of 87.7% (85.5-89.9%), while for iFR accuracy was 90.2% (86.0-94.6%), with a sensitivity of 87.2% (76.6-97.8%) and a specificity of 93.2% (91.7-94.7%, all confidence intervals 95%). CONCLUSION: The presented machine-learning based tool showed high accuracy in prediction of wire-based FFR and iFR.
RESUMEN
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
RESUMEN
Background: Low-voltage area (LVA) ablation, in addition to pulmonary vein isolation (PVI), has been proposed as a new strategy in patients with atrial fibrillation (AF), but clinical trials have shown conflicting results. We performed a systematic review and meta-analysis to assess the impact of LVA ablation in patient undergoing AF ablation (PROSPERO-registered CRD42024537696). Methods: Randomized clinical trials investigating the role of LVA ablation in addition to PVI in patients with AF were searched on PubMed, Embase, and the Cochrane Library from inception to 22 April 2024. Primary outcome was atrial arrhythmia recurrence after the first AF ablation procedure. Secondary endpoints included procedure time, fluoroscopy time, and procedure-related complication rate. Sensitivity analysis including only patients with LVA demonstration at mapping and multiple subgroups analyses were also performed. Results: 1547 patients from 7 studies were included. LVA ablation in addition to PVI reduced atrial arrhythmia recurrence (odds ratio [OR] 0.65, 95% confidence interval [CI] 0.52-0.81, p < 0.001) with a number needed to treat to prevent recurrence of 10. No difference in procedure time (mean difference [MD] -5.32 min, 95% CI -19.01-8.46 min, p = 0.45), fluoroscopy time (MD -1.10 min, 95% CI -2.48-0.28 min, p = 0.12) and complication rate (OR 0.81, 95% CI 0.40-1.61, p = 0.54) was observed. Consistent results were demonstrated when considering only patients with LVA during mapping and in prespecified subgroups for AF type (paroxysmal vs. persistent), multicentric vs. monocentric trial, and ablation strategy in control group. Conclusions: In patients with AF, ablation of LVAs in addition to PVI reduces atrial arrhythmia recurrence without a significant increase in procedure time, fluoroscopy time, or complication rate.
RESUMEN
BACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are new anti-hyperglycaemic drugs with proven cardiovascular (CV) benefit in diabetic and non-diabetic patients at high CV risk. Despite a neutral class effect on arrhythmia risk, data on semaglutide suggest a possible drug-specific benefit in reducing atrial fibrillation (AF) occurrence. OBJECTIVE: To perform a meta-analysis of randomized clinical trials (RCTs) to assess the risk of incident AF in patients treated with semaglutide compared to placebo. METHODS AND RESULTS: Ten RCTs were included in the analysis. Study population encompassed 12,651 patients (7285 in semaglutide and 5366 in placebo arms), with median follow-up of 68 months. A random effect meta-analytic model was adopted to pool relative risk (RR) of incident AF. Semaglutide reduces the risk of AF by 42% (RR .58, 95% CI .40-.85), with low heterogeneity across the studies (I2 0%). At subgroup analysis, no differences emerged between oral and subcutaneous administration (oral: RR .53, 95% CI .23-1.24, I2 0%; subcutaneous: RR .59, 95% CI .39-.91, I2 0%; p-value .83). In addition, meta-regression analyses did not show any potential influence of baseline study covariates, in particular the proportion of diabetic patients (p-value .14) and body mass index (BMI) (p-value .60). CONCLUSIONS: Semaglutide significantly reduces the occurrence of incident AF by 42% as compared to placebo in individuals at high CV risk, mainly affected by type 2 diabetes mellitus. This effect appears to be consistent independently of the route of administration of the drug (oral or subcutaneous), the presence of underlying diabetes and BMI.
RESUMEN
BACKGROUND AND OBJECTIVE: Atrial fibrillation (AF) is the most common cardiac arrhythmia, inducing accelerated and irregular beating. Beside well-known disabling symptoms - such as palpitations, reduced exercise tolerance, and chest discomfort - there is growing evidence that an alteration of deep cerebral hemodynamics due to AF increases the risk of vascular dementia and cognitive impairment, even in the absence of clinical strokes. The alteration of deep cerebral circulation in AF represents one of the least investigated among the possible mechanisms. Lenticulostriate arteries (LSAs) are small perforating arteries mainly departing from the middle cerebral artery (MCA) and susceptible to small vessel disease, which is one of the mechanisms of subcortical vascular dementia development. The purpose of this study is to investigate the impact of different LSAs morphologies on the cerebral hemodynamics during AF. METHODS: By combining a computational fluid dynamics (CFD) analysis of LSAs with 7T high-resolution magnetic resonance imaging (MRI), we performed different CFD-based multivariate regression analyses to detect which geometrical and morphological vessel features mostly affect AF hemodynamics in terms of wall shear stress. We exploited 17 cerebral 7T-MRI derived LSA vascular geometries extracted from 10 subjects and internal carotid artery data from validated 0D cardiovascular-cerebral modeling as inflow conditions. RESULTS: Our results revealed that few geometrical variables - namely the size of the MCA and the bifurcation angles between MCA and LSA - are able to satisfactorily predict the AF impact. In particular, the present study indicates that LSA morphologies exhibiting markedly obtuse LSA-MCA inlet angles and small MCA size downstream of the LSA-MCA bifurcation may be more prone to vascular damage induced by AF. CONCLUSIONS: The present MRI-based computational study has been able for the first time to: (i) investigate the net impact of LSAs vascular morphologies on cerebral hemodynamics during AF events; (ii) detect which combination of morphological features worsens the hemodynamic response in the presence of AF. Awaiting necessary clinical confirmation, our analysis suggests that the local hemodynamics of LSAs is affected by their geometrical features and some LSA morphologies undergo greater hemodynamic alterations in the presence of AF.
Asunto(s)
Fibrilación Atrial , Hemodinámica , Imagen por Resonancia Magnética , Humanos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/diagnóstico por imagen , Análisis Multivariante , Masculino , Femenino , Circulación Cerebrovascular , Modelos Cardiovasculares , Análisis de Regresión , Hidrodinámica , Persona de Mediana Edad , Arterias Cerebrales/fisiopatología , Arterias Cerebrales/diagnóstico por imagenRESUMEN
The relationship between epicardial adipose tissue (EAT) and atrial fibrillation (AF) has gained interest in recent years. The previous literature on the topic presents great heterogeneity, focusing especially on computed tomography imaging. The aim of the present study is to determine whether an increased volume of left atrial (LA) EAT evaluated at routine pre-procedural cardiac magnetic resonance imaging (MRI) relates to AF recurrences after catheter ablation. A total of 50 patients undergoing AF cryoballoon ablation and pre-procedural cardiac MRI allowing quantification of LA EAT were enrolled. In one patient, the segmentation of LA EAT could not be achieved. After a median follow-up of 16.0 months, AF recurrences occurred in 17 patients (34%). The absolute volume of EAT was not different in patients with and without AF recurrences (10.35 mL vs. 10.29 mL; p-value = 0.963), whereas the volume of EAT indexed on the LA volume (EATi) was lower, albeit non-statistically significant, in patients free from arrhythmias (12.77% vs. 14.06%; p-value = 0.467). The receiver operating characteristic curve testing the ability of LA EATi to predict AF recurrence after catheter ablation showed sub-optimal performance (AUC: 0.588). The finest identified cut-off of LA EATi was 10.65%, achieving a sensitivity of 0.5, a specificity of 0.82, a positive predictive value of 0.59 and a negative predictive value of 0.76. Patients with values of LA EATi lower than 10.65% showed greater survival, free from arrhythmias, than patients with values above this cut-off (84% vs. 48%; p-value = 0.04). In conclusion, EAT volume indexed on the LA volume evaluated at cardiac MRI emerges as a possible independent predictor of arrhythmia recurrence after AF cryoballoon ablation. Nevertheless, prospective studies are needed to confirm this finding and eventually sustain routine EAT evaluation in the management of patients undergoing AF catheter ablation.
RESUMEN
The treatment of outflow tract ventricular arrhythmias (OTVA) through radiofrequency ablation requires the precise identification of the site of origin (SOO). Pinpointing the SOO enhances the likelihood of a successful procedure, reducing intervention times and recurrence rates. Current clinical methods to identify the SOO are based on qualitative analysis of pre-operative electrocardiograms (ECG), heavily relying on physician's expertise. Although computational models and machine learning (ML) approaches have been proposed to assist OTVA procedures, they either consume substantial time, lack interpretability or do not use clinical information. Here, we propose an alternative strategy for automatically predicting the ventricular origin of OTVA patients using ML. Our objective was to classify ventricular (left/right) origin in the outflow tracts (LVOT and RVOT, respectively), integrating ECG and clinical data from each patient. Extending beyond differentiating ventricle origin, we explored specific SOO characterization. Utilizing four databases, we also trained supervised learning models on the QRS complexes of the ECGs, clinical data, and their combinations. The best model achieved an accuracy of 89%, highlighting the significance of precordial leads V1-V4, especially in the R/S transition and initiation of the QRS complex in V2. Unsupervised analysis revealed that some origins tended to group closer than others, e.g., right coronary cusp (RCC) with a less sparse group than the aortic cusp origins, suggesting identifiable patterns for specific SOOs.
RESUMEN
Background and Objectives: Atrial fibrillation (AF) results in systemic hemodynamic perturbations which impact cerebral circulation, possibly contributing to the development of dementia. However, evidence documenting effects in cerebral perfusion is scarce. The aim of this study is to provide a quantitative characterization of the magnitude and time course of the cerebral hemodynamic response to the short hypotensive events associated with long R-R intervals, as detected by near-infrared spectroscopy (NIRS). Materials and Methods: Cerebral NIRS signals and arterial blood pressure were continuously recorded along with an electrocardiogram in twelve patients with AF undergoing elective electrical cardioversion (ECV). The top 0.5-2.5% longest R-R intervals during AF were identified in each patient and used as triggers to carry out the triggered averaging of hemodynamic signals. The average curves were then characterized in terms of the latency, magnitude, and duration of the observed effects, and the possible occurrence of an overshoot was also investigated. Results: The triggered averages revealed that long R-R intervals produced a significant drop in diastolic blood pressure (-13.7 ± 6.1 mmHg) associated with an immediate drop in cerebral blood volume (THI: -0.92 ± 0.46%, lasting 1.9 ± 0.8 s), followed by a longer-lasting decrease in cerebral oxygenation (TOI: -0.79 ± 0.37%, lasting 5.2 ± 0.9 s, p < 0.01). The recovery of the TOI was generally followed by an overshoot (+1.06 ± 0.12%). These effects were progressively attenuated in response to R-R intervals of a shorter duration. Conclusions: Long R-R intervals cause a detectable and consistent cerebral hemodynamic response which concerns both cerebral blood volume and oxygenation and outlasts the duration of the systemic perturbation. These effects are compatible with the activation of dynamic autoregulatory mechanisms in response to the hypotensive stimulus.
Asunto(s)
Fibrilación Atrial , Circulación Cerebrovascular , Hemodinámica , Espectroscopía Infrarroja Corta , Humanos , Fibrilación Atrial/fisiopatología , Masculino , Femenino , Proyectos Piloto , Anciano , Persona de Mediana Edad , Circulación Cerebrovascular/fisiología , Espectroscopía Infrarroja Corta/métodos , Hemodinámica/fisiología , Electrocardiografía/métodos , Cardioversión Eléctrica/métodos , Presión Sanguínea/fisiologíaRESUMEN
AIMS: Pulmonary vein isolation (PVI) for paroxysmal atrial fibrillation (PAF) using very high-power short-duration (vHPSD) radiofrequency (RF) ablation proved to be safe and effective. However, vHPSD applications result in shallower lesions that might not be always transmural. Multidetector computed tomography-derived left atrial wall thickness (LAWT) maps could enable a thickness-guided switching from vHPSD to the standard-power ablation mode. The aim of this randomized trial was to compare the safety, the efficacy, and the efficiency of a LAWT-guided vHPSD PVI approach with those of the CLOSE protocol for PAF ablation (NCT04298177). METHODS AND RESULTS: Consecutive patients referred for first-time PAF ablation were randomized on a 1:1 basis. In the QDOT-by-LAWT arm, for LAWT ≤2.5â mm, vHPSD ablation was performed; for points with LAWT > 2.5 mm, standard-power RF ablation titrating ablation index (AI) according to the local LAWT was performed. In the CLOSE arm, LAWT information was not available to the operator; ablation was performed according to the CLOSE study settings: AI ≥400 at the posterior wall and ≥550 at the anterior wall. A total of 162 patients were included. In the QDOT-by-LAWT group, a significant reduction in procedure time (40 vs. 70â min; P < 0.001) and RF time (6.6 vs. 25.7â min; P < 0.001) was observed. No difference was observed between the groups regarding complication rate (P = 0.99) and first-pass isolation (P = 0.99). At 12-month follow-up, no significant differences occurred in atrial arrhythmia-free survival between groups (P = 0.88). CONCLUSION: LAWT-guided PVI combining vHPSD and standard-power ablation is not inferior to the CLOSE protocol in terms of 1-year atrial arrhythmia-free survival and demonstrated a reduction in procedural and RF times.
Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Atrios Cardíacos , Tomografía Computarizada Multidetector , Venas Pulmonares , Humanos , Venas Pulmonares/cirugía , Venas Pulmonares/diagnóstico por imagen , Fibrilación Atrial/cirugía , Fibrilación Atrial/fisiopatología , Femenino , Masculino , Ablación por Catéter/métodos , Persona de Mediana Edad , Anciano , Atrios Cardíacos/cirugía , Atrios Cardíacos/diagnóstico por imagen , Factores de Tiempo , Resultado del Tratamiento , Recurrencia , Frecuencia Cardíaca , Potenciales de AcciónRESUMEN
AIMS: Percutaneous stellate ganglion block (PSGB) through single-bolus injection and thoracic epidural anaesthesia (TEA) have been proposed for the acute management of refractory ventricular arrhythmias (VAs). However, data on continuous PSGB (C-PSGB) are scant. The aim of this study is to report our dual-centre experience with C-PSGB and to perform a systematic review on C-PSGB and TEA. METHODS AND RESULTS: Consecutive patients receiving C-PSGB at two centres were enrolled. The systematic literature review follows the latest Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Our case series (26 patients, 88% male, 60 ± 16 years, all with advanced structural heart disease, left ventricular ejection fraction 23 ± 11%, 32 C-PSGBs performed, with a median duration of 3 days) shows that C-PSGB is feasible and safe and leads to complete VAs suppression in 59% and to overall clinical benefit in 94% of cases. Overall, 61 patients received 68 C-PSGBs and 22 TEA, with complete VA suppression in 63% of C-PSGBs (61% of patients). Most TEA procedures (55%) were performed on intubated patients, as opposed to 28% of C-PSGBs (P = 0.02); 63% of cases were on full anticoagulation at C-PSGB, none at TEA (P < 0.001). Ropivacaine and lidocaine were the most used drugs for C-PSGB, and the available data support a starting dose of 12 and 100â mg/h, respectively. No major complications occurred, yet TEA discontinuation rate due to side effects was higher than C-PSGB (18 vs. 1%, P = 0.01). CONCLUSION: Continuous PSGB seems feasible, safe, and effective for the acute management of refractory VAs. The antiarrhythmic effect may be accomplished with less concerns for concomitant anticoagulation compared with TEA and with a lower side-effect related discontinuation rate.
Asunto(s)
Anestesia Epidural , Bloqueo Nervioso Autónomo , Ganglio Estrellado , Humanos , Ganglio Estrellado/efectos de los fármacos , Ganglio Estrellado/fisiopatología , Anestesia Epidural/métodos , Bloqueo Nervioso Autónomo/métodos , Masculino , Persona de Mediana Edad , Femenino , Anciano , Resultado del Tratamiento , Anestésicos Locales/administración & dosificación , Lidocaína/administración & dosificaciónRESUMEN
Background: Artificial intelligence (AI) has shown promise in the early detection of various cardiac conditions from a standard 12-lead electrocardiogram (ECG). However, the ability of AI to identify abnormalities from single-lead recordings across a range of pathological conditions remains to be systematically investigated. This study aims to assess the performance of a convolutional neural network (CNN) using a single-lead (D1) rather than a standard 12-lead setup for accurate identification of ECG abnormalities. Methods: We designed and trained a lightweight CNN to identify 20 different cardiac abnormalities on ECGs, using data from the PTB-XL dataset. With a relatively simple architecture, the network was designed to accommodate different combinations of leads as input (<100,000 learnable parameters). We compared various lead setups such as the standard 12-lead, D1 alone, and D1 paired with an additional lead. Results: This has been corrected to "The CNN based on single-lead ECG (D1) achieved satisfactory performance compared to the standard 12-lead framework (average percentage AUC difference: −8.7%). Notably, for certain diagnostic classes, there was no difference in the diagnostic AUC between the single-lead and the standard 12-lead setups. When a second lead was detected in the CNN in addition to D1, the AUC gap was further reduced to an average percentage difference of -2.8% compared with that of the standard 12-lead setup. Conclusions: A relatively lightweight CNN can predict different classes of cardiac abnormalities from D1 alone and the standard 12-lead ECG. Considering the growing availability of wearable devices capable of recording a D1-like single-lead ECG, we discuss how our findings contribute to the foundation of a large-scale screening of cardiac abnormalities.
RESUMEN
AIMS: Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) detects myocardial scarring, a risk factor for ventricular arrhythmias (VAs) in hypertrophic cardiomyopathy (HCM). The LGE-CMR distinguishes core, borderzone (BZ) fibrosis, and BZ channels, crucial components of re-entry circuits. We studied how scar architecture affects inducibility and electrophysiological traits of VA in HCM. METHODS AND RESULTS: We correlated scar composition with programmed ventricular stimulation-inducible VA features using LGE intensity maps. Thirty consecutive patients were enrolled. Thirteen (43%) were non-inducible, 6 (20%) had inducible non-sustained, and 11 (37%) had inducible sustained mono (MMVT)- or polymorphic VT/VF (PVT/VF). Of 17 induced VA, 13 (76%) were MMVT that either ended spontaneously, persisted as sustained monomorphic, or degenerated into PVT/VF. Twenty-seven patients (90%) had LGE. Of these, 17 (57%) had non-sustained or sustained inducible VA. Scar mass significantly increased (P = 0.002) from non-inducible to inducible non-sustained and sustained VA patients in both the BZ and core components. Borderzone channels were found in 23%, 67%, and 91% of non-inducible, inducible non-sustained, and inducible sustained VA patients (P = 0.003). All 13 patients induced with MMVT or monomorphic-initiated PVT/VF had LGE. The origin of 10/13 of these VTs matched scar location, with 8/10 of these LGE regions showing BZ channels. During follow-up (20 months, interquartile range: 7-37), one patient with BZ channels and inducible PVT had an ICD shock for VF. CONCLUSION: Scar architecture determines inducibility and electrophysiological traits of VA in HCM. Larger studies should explore the role of complex LGE patterns in refining risk assessment in HCM patients.
Asunto(s)
Cardiomiopatía Hipertrófica , Canal de Sodio Activado por Voltaje NAV1.5/deficiencia , Taquicardia Ventricular , Fibrilación Ventricular , Humanos , Cicatriz/complicaciones , Cicatriz/patología , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Medios de Contraste , Gadolinio/farmacología , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Arritmias Cardíacas/etiología , Arritmias Cardíacas/complicacionesRESUMEN
The cardiac autonomic nervous system (CANS) plays a pivotal role in cardiac homeostasis as well as in cardiac pathology. The first level of cardiac autonomic control, the intrinsic cardiac nervous system (ICNS), is located within the epicardial fat pads and is physically organized in ganglionated plexi (GPs). The ICNS system does not only contain parasympathetic cardiac efferent neurons, as long believed, but also afferent neurons and local circuit neurons. Thanks to its high degree of connectivity, combined with neuronal plasticity and memory capacity, the ICNS allows for a beat-to-beat control of all cardiac functions and responses as well as integration with extracardiac and higher centers for longer-term cardiovascular reflexes. The present review provides a detailed overview of the current knowledge of the bidirectional connection between the ICNS and the most studied cardiac pathologies/conditions (myocardial infarction, heart failure, arrhythmias and heart transplant) and the potential therapeutic implications. Indeed, GP modulation with efferent activity inhibition, differently achieved, has been studied for atrial fibrillation and functional bradyarrhythmias, while GP modulation with efferent activity stimulation has been evaluated for myocardial infarction, heart failure and ventricular arrhythmias. Electrical therapy has the unique potential to allow for both kinds of ICNS modulation while preserving the anatomical integrity of the system.
RESUMEN
Background: Recognizing etiology is essential for treatment and secondary prevention of cerebral ischemic events. A magnetic resonance imaging (MRI) pattern suggestive of an embolic etiology has been described but, to date, there are no uniformly accepted criteria. Aim: The purpose of the study is to describe MRI features of ischemic cerebral lesions occurring after transcatheter ablation of atrial fibrillation (AF). Methods: A systematic review and meta-analysis of studies performing brain imaging investigations before and after AF transcatheter ablation was performed. The incidence of cerebral ischemic lesions after AF transcatheter ablation was the primary endpoint. The co-primary endpoints were the prevalence of the different neuroimaging features regarding the embolic cerebral ischemic lesions. Results: A total of 25 studies, encompassing 3,304 patients, were included in the final analysis. The incidence of ischemic cerebral lesions following AF transcatheter ablation was 17.2% [95% confidence interval (CI) 12.2%-23.8%], of which a minimal fraction was symptomatic [0.60% (95% CI 0.09%-3.9%)]. Only 1.6% of the lesions (95% CI 0.9%-3.0%) had a diameter >10â mm, and in 20.5% of the cases the lesions were multiple (95% CI 17.1%-24.4%). Brain lesions were equally distributed across the two hemispheres and the different lobes; cortical location was more frequent [64.0% (95% CI 42.9%-80.8%)] while the middle cerebral artery territory was the most involved 37.0% (95% CI 27.3-48.0). Conclusions: The prevailing MRI pattern comprises a predominance of small (<10â mm) cortical lesions, more prevalent in the territory of the middle cerebral artery.
RESUMEN
OBJECTIVES: To compare dual antiplatelet therapy (DAPT) de-escalation with five alternative DAPT strategies in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). DESIGN: We conducted a systematic review and network meta-analysis (NMA). Parallel-arm randomised controlled trials (RCTs) comparing DAPT strategies were included and arms of interest were compared via NMA. Partial ranking of each identified arm and for each investigated endpoint was also performed. SETTING AND PARTICIPANTS: Adult patients with ACS (≥18 years) undergoing PCI with indications for DAPT. SEARCH METHODS: A comprehensive search covered several databases (PubMed, Embase, Cochrane Central, MEDLINE, Conference Proceeding Citation Index-Science) from inception to 15 October 2023. Medical subject headings and keywords related to ACS, PCI and DAPT interventions were used. Reference lists of included studies were screened. Clinical trials registers were searched for ongoing or unpublished trials. INTERVENTIONS: Six strategies were assessed: T1 arm: acetylsalicylic acid (ASA) and prasugrel for 12 months; T2 arm: ASA and low-dose prasugrel for 12 months; T3 arm: ASA and ticagrelor for 12 months; T4 arm: DAPT de-escalation (ASA+P2Y12 inhibitor for 1-3 months, then single antiplatelet therapy with potent P2Y12 inhibitor or DAPT with clopidogrel); T5 arm: ASA and clopidogrel for 12 months; T6 arm: ASA and clopidogrel for 3-6 months. MAIN OUTCOME MEASURES: Primary outcome: Cardiovascular mortality. SECONDARY OUTCOMES: bleeding events (all, major, minor), stent thrombosis (ST), stroke, myocardial infarction (MI), all-cause mortality, major adverse cardiovascular events (MACE). RESULTS: 23 RCTs (75 064 patients with ACS) were included. No differences in cardiovascular mortality, all-cause death, recurrent MI or MACE were found when the six strategies were compared, although with different levels of certainty of evidence. ASA and clopidogrel for 12 or 3-6 months may result in a large increase of ST risk versus ASA plus full-dose prasugrel (OR 2.00, 95% CI 1.14 to 3.12, and OR 3.42, 95% CI 1.33 to 7.26, respectively; low certainty evidence for both comparisons). DAPT de-escalation probably results in a reduced risk of all bleedings compared with ASA plus full-dose 12-month prasugrel (OR 0.49, 95% CI 0.26 to 0.81, moderate-certainty evidence) and ASA plus 12-month ticagrelor (OR 0.52, 95% CI 0.33 to 0.75), while it may not increase the risk of ST. ASA plus 12-month clopidogrel may reduce all bleedings versus ASA plus full-dose 12-month prasugrel (OR 0.66, 95% CI 0.42 to 0.94, low certainty) and ASA plus 12-month ticagrelor (OR 0.70, 95% CI 0.52 to 0.89). CONCLUSIONS: DAPT de-escalation and ASA-clopidogrel regimens may reduce bleeding events compared with 12 months ASA and potent P2Y12 inhibitors. 3-6 months or 12-month aspirin-clopidogrel may increase ST risk compared with 12-month aspirin plus potent P2Y12 inhibitors, while DAPT de-escalation probably does not.
Asunto(s)
Síndrome Coronario Agudo , Metaanálisis en Red , Intervención Coronaria Percutánea , Inhibidores de Agregación Plaquetaria , Humanos , Síndrome Coronario Agudo/terapia , Síndrome Coronario Agudo/tratamiento farmacológico , Intervención Coronaria Percutánea/efectos adversos , Inhibidores de Agregación Plaquetaria/administración & dosificación , Inhibidores de Agregación Plaquetaria/efectos adversos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Terapia Antiplaquetaria Doble/métodos , Terapia Antiplaquetaria Doble/efectos adversos , Aspirina/administración & dosificación , Aspirina/uso terapéutico , Aspirina/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto , Hemorragia/inducido químicamente , Clorhidrato de Prasugrel/uso terapéutico , Clorhidrato de Prasugrel/administración & dosificación , Clorhidrato de Prasugrel/efectos adversosRESUMEN
The integration of artificial intelligence (AI) technologies is evolving in different fields of cardiology and in particular in sports cardiology. Artificial intelligence offers significant opportunities to enhance risk assessment, diagnosis, treatment planning, and monitoring of athletes. This article explores the application of AI in various aspects of sports cardiology, including imaging techniques, genetic testing, and wearable devices. The use of machine learning and deep neural networks enables improved analysis and interpretation of complex datasets. However, ethical and legal dilemmas must be addressed, including informed consent, algorithmic fairness, data privacy, and intellectual property issues. The integration of AI technologies should complement the expertise of physicians, allowing for a balanced approach that optimizes patient care and outcomes. Ongoing research and collaborations are vital to harness the full potential of AI in sports cardiology and advance our management of cardiovascular health in athletes.
Asunto(s)
Cardiología , Cardiomegalia Inducida por el Ejercicio , Deportes , Humanos , Inteligencia Artificial , Cardiología/métodos , Redes Neurales de la ComputaciónAsunto(s)
Ablación por Catéter , Miocarditis , Taquicardia Ventricular , Humanos , Miocarditis/cirugía , Imagen por Resonancia Magnética , Mapeo Epicárdico , Taquicardia Ventricular/diagnóstico por imagen , Taquicardia Ventricular/cirugía , Espectroscopía de Resonancia Magnética , Pericardio/diagnóstico por imagen , Pericardio/cirugía , Resultado del TratamientoRESUMEN
AIMS: Epicardial adipose tissue might promote atrial fibrillation (AF) in several ways, including infiltrating the underlying atrial myocardium. However, the role of this potential mechanism has been poorly investigated. The aim of this study is to evaluate the presence of left atrial (LA) infiltrated adipose tissue (inFAT) by analysing multi-detector computer tomography (MDCT)-derived three-dimensional (3D) fat infiltration maps and to compare the extent of LA inFAT between patients without AF history, with paroxysmal, and with persistent AF. METHODS AND RESULTS: Sixty consecutive patients with AF diagnosis (30 persistent and 30 paroxysmal) were enrolled and compared with 20 age-matched control; MDCT-derived images were post-processed to obtain 3D LA inFAT maps for all patients. Volume (mL) and mean signal intensities [(Hounsfield Units (HU)] of inFAT (HU -194; -5), dense inFAT (HU -194; -50), and fat-myocardial admixture (HU -50; -5) were automatically computed by the software. inFAT volume was significantly different across the three groups (P = 0.009), with post-hoc pairwise comparisons showing a significant increase in inFAT volume in persistent AF compared to controls (P = 0.006). Dense inFAT retained a significant difference also after correcting for body mass index (P = 0.028). In addition, more negative inFAT radiodensity values were found in AF patients. Regional distribution analysis showed a significantly higher regional distribution of LA inFAT at left and right superior pulmonary vein antra in AF patients. CONCLUSION: Persistent forms of AF are associated with greater degree of LA intramyocardial adipose infiltration, independently of body mass index. Compared to controls, AF patients present higher LA inFAT volume at left and right superior pulmonary vein antra.