Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(15): eadi7346, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608017

RESUMEN

A hybrid interface of solid-state single-photon sources and atomic quantum memories is a long sought-after goal in photonic quantum technologies. Here, we demonstrate deterministic storage and retrieval of light from a semiconductor quantum dot in an atomic ensemble quantum memory at telecommunications wavelengths. We store single photons from an indium arsenide quantum dot in a high-bandwidth rubidium vapor-based quantum memory, with a total internal memory efficiency of (12.9 ± 0.4)%. The signal-to-noise ratio of the retrieved light field is 18.2 ± 0.6, limited only by detector dark counts.

2.
Nat Comput Sci ; 3(10): 839-848, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38177757

RESUMEN

Gaussian boson sampling (GBS) has the potential to solve complex graph problems, such as clique finding, which is relevant to drug discovery tasks. However, realizing the full benefits of quantum enhancements requires large-scale quantum hardware with universal programmability. Here we have developed a time-bin-encoded GBS photonic quantum processor that is universal, programmable and software-scalable. Our processor features freely adjustable squeezing parameters and can implement arbitrary unitary operations with a programmable interferometer. Leveraging our processor, we successfully executed clique finding on a 32-node graph, achieving approximately twice the success probability compared to classical sampling. As proof of concept, we implemented a versatile quantum drug discovery platform using this GBS processor, enabling molecular docking and RNA-folding prediction tasks. Our work achieves GBS circuitry with its universal and programmable architecture, advancing GBS toward use in real-world applications.


Asunto(s)
Lesiones Accidentales , Humanos , Simulación del Acoplamiento Molecular , Descubrimiento de Drogas , Distribución Normal , Fotones
3.
Phys Rev Lett ; 125(24): 243601, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412068

RESUMEN

The development of useful photon-photon interactions can trigger numerous breakthroughs in quantum information science, however, this has remained a considerable challenge spanning several decades. Here, we demonstrate the first room-temperature implementation of large phase shifts (≈π) on a single-photon level probe pulse (1.5 µs) triggered by a simultaneously propagating few-photon-level signal field. This process is mediated by Rb^{87} vapor in a double-Λ atomic configuration. We use homodyne tomography to obtain the quadrature statistics of the phase-shifted quantum fields and perform maximum-likelihood estimation to reconstruct their quantum state in the Fock state basis. For the probe field, we have observed input-output fidelities higher than 90% for phase-shifted output states, and high overlap (over 90%) with a theoretically perfect coherent state. Our noise-free, four-wave-mixing-mediated photon-photon interface is a key milestone toward developing quantum logic and nondemolition photon detection using schemes such as coherent photon conversion.

4.
Opt Lett ; 36(16): 3130-2, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21847183

RESUMEN

We present a five-level atomic system in which the index of refraction of a probe laser can be enhanced or reduced below unity with vanishing absorption in the region between pairs of absorption and gain lines formed by dressing of the atoms with a control laser and rf/microwave fields. By weak incoherent pumping of the population into a single metastable state, one can create several narrow amplifying resonances. At frequencies between these gain lines and additional absorption lines, there exist regions of vanishing absorption but resonantly enhanced index of refraction. In Rb vapors with density N in units of cm(-3), we predict an index of refraction up to n≈√(1+1.2×10(-14)N) for the D1 line, which is more than an order of magnitude larger than other proposals for index of refraction enhancement. Furthermore, the index can be readily reduced below 1 by simply changing the sign of the probe or rf field detunings. This enhancement is robust with respect to homogeneous and inhomogeneous broadening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...