Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(5): 1119-1125, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38563103

RESUMEN

Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70°C. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60°C. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80°C heat treatment without significant loss of or with increased activity.


Asunto(s)
6-Fitasa , Estabilidad de Enzimas , Calor , 6-Fitasa/genética , 6-Fitasa/metabolismo , 6-Fitasa/química , Concentración de Iones de Hidrógeno , Mutación , Pichia/genética , Pichia/metabolismo , Temperatura , Alimentación Animal/análisis , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
2.
J Hazard Mater ; 429: 128267, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35091192

RESUMEN

Biodegradation of polyethylene terephthalate (PET) is one of fundamental ways to solve plastic pollution. As various microbial hydrolases have an extra domain unlike PETase from Ideonella sakaiensis (IsPETase), research on the role of these extra domain in PET hydrolysis is crucial for the identification and selection of a novel PET hydrolase. Here, we report that a PET hydrolase from Burkholderiales bacterium RIFCSPLOWO2_02_FULL_57_36 (BbPETase) with an additional N-terminal domain (BbPETaseAND) shows a similar hydrolysis activity toward microcrystalline PET and a higher thermal stability than IsPETase. Based on detailed structural comparisons between BbPETase and IsPETase, we generated the BbPETaseS335N/T338I/M363I/N365G variant with an enhanced PET-degrading activity and thermal stability. We further revealed that BbPETaseAND contributes to the thermal stability of the enzyme through close contact with the core domain, but the domain might hinder the adhesion of enzyme to PET substrate. We suggest that BbPETase is an enzyme in the evolution of efficient PET degradation and molecular insight into a novel PET hydrolase provides a novel strategy for the development of biodegradation of PET.


Asunto(s)
Burkholderiales , Hidrolasas , Burkholderiales/metabolismo , Hidrolasas/metabolismo , Hidrólisis , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo
3.
J Agric Food Chem ; 70(5): 1571-1578, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35084172

RESUMEN

Methionine is an essential amino acid in all living organisms and has been used in various industrial applications such as food and feed additives. However, inhibition of enzymes involved in methionine biosynthesis is considered to be a crucial bottleneck for an efficient bio-based methionine production process. Homoserine O-succinyltransferase fromEscherichia coli (EcHST) has been reported to be feedback inhibited by the final product methionine. To understand the regulation mechanism of the enzyme and generate a feedback-resistant mutant, we determined the crystal structure of EcHST and elucidated the binding site of homoserine and succinyl-CoA. The enzyme kinetic experiments of EcHST revealed that the enzyme is noncompetitively inhibited by methionine with a Ki value of 2.44 mM, and we also identified a putative inhibitor binding site located in the vicinity of the substrate binding site. We then generated the EcHSTT242A variant with reduced feedback inhibition with a Ki value of 17.40 mM.


Asunto(s)
Proteínas de Escherichia coli , Homoserina O-Succiniltransferasa , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Retroalimentación , Homoserina , Metionina
4.
J Hazard Mater ; 416: 126075, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492896

RESUMEN

The development of a superb polyethylene terephthalate (PET) hydrolyzing enzyme requires an accurate understanding of the PET decomposition mechanism. However, studies on PET degrading enzymes, including the PET hydrolase from Ideonella sakaiensis (IsPETase), have not provided sufficient knowledge of the molecular mechanisms for the hardly accessible substrate. Here, we report a novel PET hydrolase from Rhizobacter gummiphilus (RgPETase), which has a hydrolyzing activity similar to IsPETase toward microcrystalline PET but distinct behavior toward low crystallinity PET film. Structural analysis of RgPETase reveals that the enzyme shares the key structural features of IsPETase for high PET hydrolysis activity but has distinguished structures at the surface-exposed regions. RgPETase shows a unique conformation of the wobbling tryptophan containing loop (WW-loop) and change of the electrostatic surface charge on the loop dramatically affects the PET-degrading activity. We further show that effect of the electrostatic surface charge to the activity varies depending on locations. This work provides valuable information underlying the uncovered PET decomposition mechanism.


Asunto(s)
Burkholderiales , Tereftalatos Polietilenos , Hidrolasas
5.
J Agric Food Chem ; 68(51): 15267-15274, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33301683

RESUMEN

Cysteine is a semiessential amino acid and plays an important role in metabolism and protein structure and has also been applied in various industrial fields, such as pharmaceutical, food, cosmetic, and animal feed industries. Metabolic engineering studies have been conducted for the cysteine production through bacterial fermentation, but studies on the cysteine biosynthetic pathway in microorganisms are limited. We report the biochemical characteristics of cystathionine γ-lyase from Bacillus cereus ATCC 14579 (BcCGL). We also determined the crystal structure of BcCGL in complex with the PLP cofactor and identified the substrate binding mode. We observed that the replacement of the conserved Glu321 residue to alanine showed increased activity by providing wider active site entrance and hydrophobic interaction for the substrate. We suggest that the structural differences of the α13-α14 region in CGL enzymes might determine the active site conformation.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Bacillus cereus/química , Bacillus cereus/genética , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cistationina gamma-Liasa/genética , Cisteína/metabolismo , Cinética , Especificidad por Sustrato
6.
Enzyme Microb Technol ; 141: 109656, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33051015

RESUMEN

Poly(ethylene terephthalate) (PET), a widely used plastic around the world, causes various environmental and health problems. Several groups have been extensively conducting research to solve these problems through enzymatic degradation of PET at high temperatures around 70 °C. Recently, Ideonella sakaiensis, a bacterium that degrades PET at mild temperatures, has been newly identified, and further protein engineering studies on the PET degrading enzyme from the organism (IsPETase) have also been conducted to overcome the low thermal stability of the enzyme. In this study, we performed structural bioinformatics-based protein engineering of IsPETase to optimize the substrate binding site of the enzyme and developed two variants, IsPETaseS242T and IsPETaseN246D, with higher enzymatic activity at both 25 and 37 °C compared with IsPETaseWT. We also developed the IsPETaseS121E/D186H/S242T/N246D variant by integrating the S242 T and N246D mutations into the previously reported IsPETaseS121E/D186H/R208A variant. At the 37 °C incubation, the quadruple variant maintained the PET degradation activity for 20 days, unlike IsPETaseWT that lost its activity within a day. Consequently, this study exhibited 58-fold increase in the activity compared with IsPETaseWT.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderiales/enzimología , Tereftalatos Polietilenos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Biodegradación Ambiental , Burkholderiales/genética , Biología Computacional , Estabilidad de Enzimas , Mutación , Tereftalatos Polietilenos/química , Ingeniería de Proteínas , Temperatura
8.
Biochem Biophys Res Commun ; 517(3): 399-406, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31378370

RESUMEN

Mycobacterium smegmatis is a good model for studying the physiology and pathogenesis of Mycobacterium tuberculosis due to its genetic similarity. As methionine biosynthesis exists only in microorganisms, the enzymes involved in methionine biosynthesis can be a potential target for novel antibiotics. Homoserine O-acetyltransferase from M. smegmatis (MsHAT) catalyzes the transfer of acetyl-group from acetyl-CoA to homoserine. To investigate the molecular mechanism of MsHAT, we determined its crystal structure in apo-form and in complex with either CoA or homoserine and revealed the substrate binding mode of MsHAT. A structural comparison of MsHAT with other HATs suggests that the conformation of the α5 to α6 region might influence the shape of the dimer. In addition, the active site entrance shows an open or closed conformation and might determine the substrate binding affinity of HATs.


Asunto(s)
Acetilcoenzima A/química , Acetiltransferasas/química , Apoproteínas/química , Proteínas Bacterianas/química , Homoserina/química , Mycobacterium smegmatis/química , Acetilcoenzima A/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Haemophilus influenzae/química , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Homoserina/metabolismo , Cinética , Leptospira interrogans/química , Leptospira interrogans/enzimología , Leptospira interrogans/genética , Modelos Moleculares , Mycobacteriaceae/química , Mycobacteriaceae/enzimología , Mycobacteriaceae/genética , Mycobacterium abscessus/química , Mycobacterium abscessus/enzimología , Mycobacterium abscessus/genética , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
9.
Biochem Biophys Res Commun ; 508(1): 250-255, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30477746

RESUMEN

Poly(ethylene terephthalate) (PET) is the most commonly used polyester polymer resin in fabrics and storage materials, and its accumulation in the environment is a global problem. The ability of PET hydrolase from Ideonella sakaiensis 201-F6 (IsPETase) to degrade PET at moderate temperatures has been studied extensively. However, due to its low structural stability and solubility, it is difficult to apply standard laboratory-level IsPETase expression and purification procedures in industry. To overcome this difficulty, the expression of IsPETase can be improved by using a secretion system. This is the first report on the production of an extracellular IsPETase, active against PET film, using Sec-dependent translocation signal peptides from E. coli. In this work, we tested the effects of fusions of the Sec-dependent and SRP-dependent signal peptides from E. coli secretory proteins into IsPETase, and successfully produced the extracellular enzyme using pET22b-SPMalE:IsPETase and pET22b-SPLamB:IsPETase expression systems. We also confirmed that the secreted IsPETase has PET-degradation activity. The work will be used for development of a new E. coli strain capable of degrading and assimilating PET in its culture medium.


Asunto(s)
Burkholderiales/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrolasas/biosíntesis , Tereftalatos Polietilenos/metabolismo , Señales de Clasificación de Proteína
10.
Trends Biochem Sci ; 43(10): 790-805, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30139647

RESUMEN

Polyhydroxyalkanoates (PHAs) are diverse biopolyesters produced by numerous microorganisms and have attracted much attention as a substitute for petroleum-based polymers. Despite several decades of study, the detailed molecular mechanisms of PHA biosynthesis have remained unknown due to the lack of structural information on the key PHA biosynthetic enzyme PHA synthase. The recently determined crystal structure of PHA synthase, together with the structures of acetyl-coenzyme A (CoA) acetyltransferase and reductase, have changed this situation. Structural and biochemical studies provided important clues for the molecular mechanisms of each enzyme as well as the overall mechanism of PHA biosynthesis from acetyl-CoA. This new information and knowledge is expected to facilitate production of designed novel PHAs and also enhanced production of PHAs.


Asunto(s)
Polihidroxialcanoatos/metabolismo , Acetato CoA Ligasa/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Catálisis , Estructura Molecular , Polihidroxialcanoatos/química , Polimerizacion , Especificidad por Sustrato
11.
Nat Commun ; 9(1): 382, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374183

RESUMEN

Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.


Asunto(s)
Proteínas Bacterianas/química , Burkholderiales/enzimología , Contaminantes Ambientales/química , Hidrolasas/química , Tereftalatos Polietilenos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Burkholderiales/química , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Contaminantes Ambientales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicol de Etileno/química , Glicol de Etileno/metabolismo , Expresión Génica , Hidrolasas/genética , Hidrolasas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Tereftalatos Polietilenos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
12.
J Agric Food Chem ; 65(29): 6002-6008, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28675039

RESUMEN

Cystathionine γ-synthase (MetB) condenses O-acetyl-l-homoserine (OAHS) or O-succinyl-l-homoserine (OSHS) with cysteine to produce cystathionine. To investigate the molecular mechanisms and substrate specificity of MetB from Corynebacterium glutamicum (CgMetB), we determined its crystal structure at 1.5 Å resolution. The pyridoxal phosphate cofactor is covalently bound to Lys204 via a Schiff base linkage in the deep cavity. Superposition with the structure of MetB from Nicotiana tabacum in complex with its inhibitor dl-(E)-2-amino-5-phosphono-3-pentenoic acid revealed that Thr347 from the ß10-ß11 connecting loop, located at the entrance of the active site, is speculated to be a main contributor for stabilization of the acetyl group of OAHS. Moreover, on the basis of structural comparison of CgMetB with EcMetB utilizing OSHS as a main substrate, we propose that the conformation of the ß10-ß11 connecting loops determines the size and shape of the acetyl- or succinyl-group binding site and ultimately determines the substrate specificity of MetBs toward OAHS or OSHS.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Oxígeno/química , Corynebacterium glutamicum/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Oxígeno/metabolismo , Dominio Catalítico , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Homoserina/análogos & derivados , Homoserina/química , Homoserina/metabolismo , Cinética , Especificidad por Sustrato
13.
Sci Rep ; 7: 42318, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28176858

RESUMEN

Diaminopimelate epimerase (DapF) is one of the crucial enzymes involved in l-lysine biosynthesis, where it converts l,l-diaminopimelate (l,l-DAP) into d,l-DAP. DapF is also considered as an attractive target for the development of antibacterial drugs. Here, we report the crystal structure of DapF from Corynebacterium glutamicum (CgDapF). Structures of CgDapF obtained under both oxidized and reduced conditions reveal that the function of CgDapF is regulated by redox-switch modulation via reversible disulfide bond formation between two catalytic cysteine residues. Under oxidized condition, two catalytic cysteine residues form a disulfide bond; these same cysteine residues exist in reduced form under reduced condition. Disulfide bond formation also induces a subsequent structural change in the dynamic catalytic loop at the active site, which results in open/closed conformational change at the active site. We also determined the crystal structure of CgDapF in complex with its product d,l-DAP, and elucidated how the enzyme recognizes its substrate l,l-DAP as a substrate. Moreover, the structure in complex with the d,l-DAP product reveals that CgDapF undergoes a large open/closed domain movement upon substrate binding, resulting in a completely buried active site with the substrate bound.


Asunto(s)
Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Corynebacterium glutamicum/enzimología , Lisina/biosíntesis , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Disulfuros/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
14.
PLoS One ; 12(1): e0170163, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28095457

RESUMEN

Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity.


Asunto(s)
Cadaverina/metabolismo , Carboxiliasas/metabolismo , Disulfuros/metabolismo , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Fosfato de Piridoxal/metabolismo , Selenomonas/enzimología , Sitios de Unión , Carboxiliasas/química , Carboxiliasas/genética , Dominio Catalítico , Disulfuros/química , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación/genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
15.
PLoS One ; 11(11): e0166667, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27861532

RESUMEN

Lysine decarboxylase (LDC) is a crucial enzyme for acid stress resistance and is also utilized for the biosynthesis of cadaverine, a promising building block for bio-based polyamides. We determined the crystal structure of LDC from Selenomonas ruminantium (SrLDC). SrLDC functions as a dimer and each monomer consists of two distinct domains; a PLP-binding barrel domain and a sheet domain. We also determined the structure of SrLDC in complex with PLP and cadaverine and elucidated the binding mode of cofactor and substrate. Interestingly, compared with the apo-form of SrLDC, the SrLDC in complex with PLP and cadaverine showed a remarkable structural change at the PLP binding site. The PLP binding site of SrLDC contains the highly flexible loops with high b-factors and showed an open-closed conformational change upon the binding of PLP. In fact, SrLDC showed no LDC activity without PLP supplement, and we suggest that highly flexible PLP binding site results in low PLP affinity of SrLDC. In addition, other structurally homologous enzymes also contain the flexible PLP binding site, which indicates that high flexibility at the PLP binding site and low PLP affinity seems to be a common feature of these enzyme family.


Asunto(s)
Carboxiliasas/química , Modelos Moleculares , Conformación Molecular , Fosfato de Piridoxal/química , Selenomonas/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Carboxiliasas/metabolismo , Dominio Catalítico , Activación Enzimática , Unión Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes , Relación Estructura-Actividad , Especificidad por Sustrato
16.
Sci Rep ; 6: 31390, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27507425

RESUMEN

"Lonely guy" (LOG) has been identified as a cytokinin-producing enzyme in plants and plant-interacting fungi. The gene product of Cg2612 from the soil-dwelling bacterium Corynebacterium glutamicum was annotated as an LDC. However, the facts that C. glutamicum lacks an LDC and Cg2612 has high amino acid similarity with LOG proteins suggest that Cg2612 is possibly an LOG protein. To investigate the function of Cg2612, we determined its crystal structure at a resolution of 2.3 Å. Cg2612 functions as a dimer and shows an overall structure similar to other known LOGs, such as LOGs from Arabidopsis thaliana (AtLOG), Claviceps purpurea (CpLOG), and Mycobacterium marinum (MmLOG). Cg2612 also contains a "PGGXGTXXE" motif that contributes to the formation of an active site similar to other LOGs. Moreover, biochemical studies on Cg2612 revealed that the protein has phosphoribohydrolase activity but not LDC activity. Based on these structural and biochemical studies, we propose that Cg2612 is not an LDC family enzyme, but instead belongs to the LOG family. In addition, the prenyl-binding site of Cg2612 (CgLOG) comprised residues identical to those seen in AtLOG and CpLOG, albeit dissimilar to those in MmLOG. The work provides structural and functional implications for LOG-like proteins from other microorganisms.


Asunto(s)
Aminohidrolasas/química , Aminohidrolasas/metabolismo , Corynebacterium glutamicum/enzimología , Citocininas/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Corynebacterium glutamicum/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
17.
J Microbiol Biotechnol ; 26(2): 226-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26502738

RESUMEN

Dihydrodipicolinate reductase is an enzyme that converts dihydrodipicolinate to tetrahydrodipicolinate using an NAD(P)H cofactor in L-lysine biosynthesis. To increase the understanding of the molecular mechanisms of lysine biosynthesis, we determined the crystal structure of dihydrodipicolinate reductase from Corynebacterium glutamicum (CgDapB). CgDapB functions as a tetramer, and each protomer is composed of two domains, an Nterminal domain and a C-terminal domain. The N-terminal domain mainly contributes to nucleotide binding, whereas the C-terminal domain is involved in substrate binding. We elucidated the mode of cofactor binding to CgDapB by determining the crystal structure of the enzyme in complex with NADP(+) and found that CgDapB utilizes both NADH and NADPH as cofactors. Moreover, we determined the substrate binding mode of the enzyme based on the coordination mode of two sulfate ions in our structure. Compared with Mycobacterium tuberculosis DapB in complex with its cofactor and inhibitor, we propose that the domain movement for active site constitution occurs when both cofactor and substrate bind to the enzyme.


Asunto(s)
Corynebacterium glutamicum/enzimología , Dihidrodipicolinato-Reductasa/química , Dihidrodipicolinato-Reductasa/metabolismo , Lisina/biosíntesis , NADP/metabolismo , NAD/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Corynebacterium glutamicum/metabolismo , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
18.
J Agric Food Chem ; 63(49): 10641-6, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26602189

RESUMEN

Tetrahydrodipicolinate N-succinyltransferase (DapD) is an enzyme involved in the biosynthesis of l-lysine by converting tetrahydrodipicolinate into N-succinyl-l-2-amino-6-oxopimelate, using succinyl-CoA as a cofactor. We determined the crystal structure of DapD from Corynebacterium glutamicum (CgDapD). CgDapD functions as a trimer, and each monomer consists of three domains: an N-terminal helical domain (NTD), a left-handed ß-helix (LßH) domain, and a ß C-terminal domain (CTD). The mode of cofactor binding to CgDapD, elucidated by determining the structure in complex with succinyl-CoA, reveals that the position of the CTD changes slightly as the cofactor binds to the enzyme. The superposition of this structure with that of Mycobacterium tuberculosis shows differences in residues that make up cofactor-binding sites. Moreover, we determined the structure of CgDapD in complex with the substrate analogue 2-aminopimelate and revealed that the analogue was stabilized by conserved residues. The catalytic and substrate binding sites of CgDapD were confirmed by site-directed mutagenesis experiments.


Asunto(s)
Aciltransferasas/química , Corynebacterium glutamicum/enzimología , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Lisina/biosíntesis , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...