Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 57: 181-196, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37391038

RESUMEN

INTRODUCTION: Skin cancer is often fatal, which motivates new therapy avenues. Recent advances in cancer treatment are indicative of the importance of combination treatments in oncology. Previous studies have identified small molecule-based therapies and redox-based technologies, including photodynamic therapy or medical gas plasma, as promising candidates to target skin cancer. OBJECTIVE: We aimed to identify effective combinations of experimental small molecules with cold gas plasma for therapy in dermato-oncology. METHODS: Promising drug candidates were identified after screening an in-house 155-compound library using 3D skin cancer spheroids and high content imaging. Combination effects of selected drugs and cold gas plasma were investigated with respect to oxidative stress, invasion, and viability. Drugs that had combined well with cold gas plasma were further investigated in vascularized tumor organoids in ovo and a xenograft mouse melanoma model in vivo. RESULTS: The two chromone derivatives Sm837 and IS112 enhanced cold gas plasma-induced oxidative stress, including histone 2A.X phosphorylation, and further reduced proliferation and skin cancer cell viability. Combination treatments of tumor organoids grown in ovo confirmed the principal anti-cancer effect of the selected drugs. While one of the two compounds exerted severe toxicity in vivo, the other (Sm837) resulted in a significant synergistic anti-tumor toxicity at good tolerability. Principal component analysis of protein phosphorylation profiles confirmed profound combination treatment effects in contrast to the monotherapies. CONCLUSION: We identified a novel compound that, combined with topical cold gas plasma-induced oxidative stress, represents a novel and promising treatment approach to target skin cancer.


Asunto(s)
Enfermedades de la Piel , Neoplasias Cutáneas , Animales , Ratones , Humanos , Neoplasias Cutáneas/tratamiento farmacológico , Histonas , Oncología Médica , Terapia Combinada , Modelos Animales de Enfermedad
2.
Oxid Med Cell Longev ; 2021: 6816214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777692

RESUMEN

Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.


Asunto(s)
Electroquimioterapia/métodos , Melanoma/terapia , Estrés Oxidativo , Fotoquimioterapia/métodos , Modalidades de Fisioterapia/estadística & datos numéricos , Radioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Melanoma/metabolismo , Melanoma/patología
3.
Br J Cancer ; 124(11): 1854-1863, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767419

RESUMEN

BACKGROUND: Recent studies have emphasised the important role of amino acids in cancer metabolism. Cold physical plasma is an evolving technology employed to target tumour cells by introducing reactive oxygen species (ROS). However, limited understanding is available on the role of metabolic reprogramming in tumour cells fostering or reducing plasma-induced cancer cell death. METHODS: The utilisation and impact of major metabolic substrates of fatty acid, amino acid and TCA pathways were investigated in several tumour cell lines following plasma exposure by qPCR, immunoblotting and cell death analysis. RESULTS: Metabolic substrates were utilised in Panc-1 and HeLa but not in OVCAR3 and SK-MEL-28 cells following plasma treatment. Among the key genes governing these pathways, ASCT2 and SLC3A2 were consistently upregulated in Panc-1, Miapaca2GR, HeLa and MeWo cells. siRNA-mediated knockdown of ASCT2, glutamine depletion and pharmacological inhibition with V9302 sensitised HeLa cells to the plasma-induced cell death. Exogenous supplementation of glutamine, valine or tyrosine led to improved metabolism and viability of tumour cells following plasma treatment. CONCLUSION: These data suggest the amino acid influx driving metabolic reprogramming in tumour cells exposed to physical plasma, governing the extent of cell death. This pathway could be targeted in combination with existing anti-tumour agents.


Asunto(s)
Aminoácidos/metabolismo , Muerte Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Neoplasias/metabolismo , Gases em Plasma/farmacología , Argón/farmacología , Argón/uso terapéutico , Células Cultivadas , Resistencia a Antineoplásicos/fisiología , Metabolismo Energético/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Metaboloma/efectos de los fármacos , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Gases em Plasma/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
4.
Free Radic Biol Med ; 167: 12-28, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711420

RESUMEN

Gas plasma is a partially ionized gas increasingly recognized for targeting cancer. Several hypotheses attempt to explain the link between plasma treatment and cytotoxicity in cancer cells, all focusing on cellular membranes that are the first to be exposed to plasma-generated reactive oxygen species (ROS). One proposes high levels of aquaporins, membrane transporters of water and hydrogen peroxide, to mark tumor cell line sensitivity to plasma treatment. A second focuses on membrane-expression of redox-related enzymes such as NADPH oxidases (NOX) that may modify or amplify the effects of plasma-derived ROS, fueling plasma-induced cancer cell death. Another hypothesis is that the decreased cholesterol content of tumor cell membranes sensitizes these to plasma-mediated oxidation and subsequently, cytotoxicity. Screening 33 surface molecules in 36 tumor cell lines in correlation to their sensitivity to plasma treatment, the expression of aquaporins or NOX members could not explain the sensitivity but were rather associated with treatment resistance. Correlation with transporter or enzyme activity was not tested. Analysis of cholesterol content confirmed the proposed positive correlation with treatment resistance. Strikingly, the strongest correlation was found for baseline metabolic activity (Spearman r = 0.76). Altogether, these data suggest tumor cell metabolism as a novel testable hypothesis to explain cancer cell resistance to gas plasma treatment for further elucidating this innovative field's chances and limitations in oncology.


Asunto(s)
Peróxido de Hidrógeno , NADPH Oxidasas , Línea Celular Tumoral , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno
5.
Sci Rep ; 11(1): 136, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420228

RESUMEN

Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.


Asunto(s)
Neoplasias Colorrectales/terapia , Neón/farmacología , Gases em Plasma/farmacología , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/fisiopatología , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones , Neón/química , Estrés Oxidativo/efectos de los fármacos , Fagocitosis , Gases em Plasma/química , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares
6.
Cancers (Basel) ; 12(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708225

RESUMEN

Cutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process. Therapy-resistant and highly aggressive SCC is frequently fatal, exemplifying the need for novel treatment strategies. Cold physical plasma is a partially ionized gas, expelling therapeutic doses of reactive oxygen and nitrogen species that were investigated for their anticancer capacity against SCC in vitro and SCC-like lesions in vivo. Using the kINPen argon plasma jet, a selective growth-reducing action of plasma treatment was identified in two SCC cell lines in 2D and 3D cultures. In vivo, plasma treatment limited the progression of UVB-induced SSC-like skin lesions and dermal degeneration without compromising lesional or non-lesional skin. In lesional tissue, this was associated with a decrease in cell proliferation and the antioxidant transcription factor Nrf2 following plasma treatment, while catalase expression was increased. Analysis of skin adjacent to the lesions and determination of global antioxidant parameters confirmed the local but not systemic action of the plasma anticancer therapy in vivo.

7.
Adv Sci (Weinh) ; 7(10): 1903438, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440479

RESUMEN

Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS). Using a melanoma model, gas plasma technology is tested as a novel anticancer agent. Plasma technology derived ROS diminish tumor growth in vitro and in vivo. Varying the feed gas mixture modifies the composition of ROS. Conditions rich in atomic oxygen correlate with killing activity and elevate intratumoral immune-infiltrates of CD8+ cytotoxic T-cells and dendritic cells. T-cells from secondary lymphoid organs of these mice stimulated with B16 melanoma cells ex vivo show higher activation levels as well. This correlates with immunogenic cancer cell death and higher calreticulin and heat-shock protein 90 expressions induced by gas plasma treatment in melanoma cells. To test the immunogenicity of gas plasma treated melanoma cells, 50% of mice vaccinated with these cells are protected from tumor growth compared to 1/6 and 5/6 mice negative control (mitomycin C) and positive control (mitoxantrone), respectively. Gas plasma jet technology is concluded to provide immunoprotection against malignant melanoma both in vitro and in vivo.

8.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085661

RESUMEN

Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFα, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Melanoma Experimental/inmunología , Melanoma Experimental/radioterapia , Gases em Plasma/uso terapéutico , Animales , Apoptosis , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Factores Inmunológicos/farmacología , Ratones , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
9.
Redox Biol ; 30: 101423, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31931281

RESUMEN

Cold physical plasma is a partially ionized gas investigated as a new anticancer tool in selectively targeting cancer cells in monotherapy or in combination with therapeutic agents. Here, we investigated the intrinsic resistance mechanisms of tumor cells towards physical plasma treatment. When analyzing the dose-response relationship to cold plasma-derived oxidants in 11 human cancer cell lines, we identified four 'resistant' and seven 'sensitive' cell lines. We observed stable intracellular glutathione levels following plasma treatment only in the 'resistant' cell lines indicative of altered antioxidant mechanisms. Assessment of proteins involved in GSH metabolism revealed cystine-glutamate antiporter xCT (SLC7A11) to be significantly more abundant in the 'resistant' cell lines as compared to 'sensitive' cell lines. This decisive role of xCT was confirmed by pharmacological and genetic inhibition, followed by cold physical plasma treatment. Finally, microscopy analysis of ex vivo plasma-treated human melanoma punch biopsies suggested a correlation between apoptosis and basal xCT protein abundance. Taken together, our results demonstrate that xCT holds the potential as a biomarker predicting the sensitivity of tumor cells towards plasma treatment.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Resistencia a Antineoplásicos , Melanoma/genética , Gases em Plasma/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Regulación Neoplásica de la Expresión Génica , Glutatión/metabolismo , Células HeLa , Humanos , Masculino , Melanoma/metabolismo , Persona de Mediana Edad , Regulación hacia Arriba
10.
Cell Death Dis ; 9(12): 1179, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518936

RESUMEN

Malignant melanoma is an aggressive cancer that develops drug resistance leading to poor prognosis. Efficient delivery of chemotherapeutic drugs to the tumor tissue remains a major challenge in treatment regimens. Using murine (B16) and human (SK-MEL-28) melanoma cells, we investigated traditional cytotoxic agents in combination with cold physical plasma-derived oxidants. We report synergistic cytotoxicity of doxorubicin and epirubicin, and additive toxicity of oxaliplatin with plasma exposure in coefficient of drug interaction analysis. The combination treatment led to an increased DNA damage response (increased phosphorylation of ATM, γ-H2AX foci, and micronuclei formation). There was also an enhanced secretion of immunogenic cell death markers ATP and CXCL10 in cell culture supernatants following combination treatment. The observed synergistic effects in tumor cells was due to enhanced intracellular doxorubicin accumulation via upregulation of the organic cationic transporter SLC22A16 by plasma treatment. The doxorubicin uptake was reversed by pretreating cells with antioxidants or calcium influx inhibitor BTP2. Endoribonuclease-prepared siRNAs (esiRNA)-mediated knockdown of SLC22A16 inhibited the additive cytotoxic effect in tumor cells. SK-MEL 28 and THP-1 monocytes co-culture led to greater THP-1 cell migration and SK-MEL-28 cytotoxicity when compared with controls. Taken together, we propose pro-oxidant treatment modalities to sensitize chemoresistant melanoma cells towards subsequent chemotherapy, which may serve as therapeutic strategy in combination treatment in oncology.


Asunto(s)
Antineoplásicos/farmacología , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Proteínas de Transporte de Catión Orgánico/genética , Gases em Plasma/farmacología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Técnicas de Cocultivo , Terapia Combinada , Doxorrubicina/farmacología , Epirrubicina/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Histonas/genética , Histonas/metabolismo , Humanos , Melanoma Experimental , Ratones , Proteínas de Transporte de Catión Orgánico/agonistas , Proteínas de Transporte de Catión Orgánico/metabolismo , Oxaliplatino/farmacología , Células THP-1 , Vorinostat/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...