Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 340: 111964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159611

RESUMEN

Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.


Asunto(s)
Nanoestructuras , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico , Temperatura
2.
Plant Physiol Biochem ; 206: 108225, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147708

RESUMEN

The increased global food insecurity due to the growing population can be addressed with precision and sustainable agricultural practices. To tackle the issues regarding food insecurity, farmers used different agrochemicals that improved plant growth and protection. Among these agrochemicals, synthetic pesticides used for plant protection in the agricultural field have various disadvantages. Conventional applications of synthetic pesticides have drawbacks such as rapid degradation, poor solubility, and non-target effects, as well as increased pesticide runoff that pollutes the environment. Nanotechnology has evolved as a potential solution to increase agricultural productivity through the development of different nanoforms of agrochemicals such as nanopesticides, nano-fabricated fertilizers, nanocapsules, nanospheres, nanogels, nanofibers, nanomicelles, and nano-based growth promoters. Encapsulation of these pesticides inside the nanomaterials has provided good biocompatibility over conventional application by inhibiting the early degradation of active ingredients (AI), increasing the uptake and adhesion of pesticides, improving the stability, solubility, and permeability of the pesticides, and decreasing the environmental impacts due to the pesticide runoff. In this review, different nanoforms of encapsulated pesticides and their smart delivery systems; nanocarriers in RNA interference (RNAi) based pesticides; environmental fate, practical implications, management of nanopesticides; and future perspectives are discussed.


Asunto(s)
Nanoestructuras , Plaguicidas , Agricultura , Agroquímicos/farmacología , Nanotecnología , Plantas
3.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834240

RESUMEN

Recent studies have revealed considerable promise in the antiviral properties of metal nanomaterials, specifically when biologically prepared. This study demonstrates for the first time the antiviral roles of the plant cell-engineered gold nanoparticles (pAuNPs) alone and when conjugated with quercetin (pAuNPsQ). We show here that the quercetin conjugated nanoparticles (pAuNPsQ) preferentially inhibit the cell entry of two medically important viruses-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and herpes simplex virus type-1 (HSV-1) using different mechanisms. Interestingly, in the case of SARS-CoV-2, the pre-treatment of target cells with pAuNPsQ inhibited the viral entry, but the pre-treatment of the virus with pAuNPsQ did not affect viral entry into the host cell. In contrast, pAuNPsQ demonstrated effective blocking capabilities against HSV-1 entry, either during the pre-treatment of target cells or by inducing virus neutralization. In addition, pAuNPsQ also significantly affected HSV-1 replication, evidenced by the plaque-counting assay. In this study, we also tested the chemically synthesized gold nanoparticles (cAuNPs) of identical size and shape and observed comparable effects. The versatility of plant cell-based nanomaterial fabrication and its modification with bioactive compounds opens a new frontier in therapeutics, specifically in designing novel antiviral formulations.


Asunto(s)
COVID-19 , Herpesvirus Humano 1 , Nanopartículas del Metal , Humanos , SARS-CoV-2 , Oro/farmacología , Quercetina/farmacología , Células Vegetales , Antivirales/farmacología , Internalización del Virus
4.
Plant Sci ; 336: 111835, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611833

RESUMEN

Soil salinity is a global issue that limits plant growth in agricultural fields and contributes to food crisis. Salt stressors impede plant's ionic, osmotic, and oxidative balance, as well as a variety of physiological functions. Exposure to salinity stress manifest considerable ROS clustering, entailing modification in performance of various organelles. To deal with salinity, plants use a variety of coping strategies, such as osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Nitric oxide (NO) is a pivotal signalling molecule that helps facilitate salt stress-induced physiological plant responses. A variety of evidences point to NO being produced under similar stress conditions and with similar kinetics as hydrogen peroxide (H2O2). The interplay between H2O2 and NO has important functional implications for modulating plant transduction processes. Besides, NO and calcium (Ca2+)-dependent pathways also have some connection in salt stress response mechanisms. Extensive crosstalk between NO and Ca2+ signalling pathways is investigated, and it suggests that almost every type of Ca2+ channel is under the tight control of NO, and NO acts as a Ca2+ mobilising compound and aids in signal reliance. The review provides insights into understanding recent advances regarding NO's, Ca2+ and H2O2 role in salt stress reduction with entwine signaling mechanisms.


Asunto(s)
Peróxido de Hidrógeno , Óxido Nítrico , Óxido Nítrico/metabolismo , Peróxido de Hidrógeno/metabolismo , Calcio/metabolismo , Plantas/metabolismo , Estrés Salino , Salinidad , Estrés Fisiológico
5.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242021

RESUMEN

The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.

6.
J Vis Exp ; (192)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847372

RESUMEN

Comprehensive knowledge of plant root system architecture (RSA) development is critical for improving nutrient use efficiency and increasing crop cultivar tolerance to environmental challenges. An experimental protocol is presented for setting up the hydroponic system, plantlet growth, RSA spreading, and imaging. The approach used a magenta box-based hydroponic system containing polypropylene mesh supported by polycarbonate wedges. Experimental settings are exemplified by assessing the RSA of the plantlets under varying nutrient (phosphate [Pi]) supply. The system was established to examine the RSA of Arabidopsis, but it is readily adaptable to study other plants like Medicago sativa (Alfalfa). Arabidopsis thaliana (Col-0) plantlets are used in this investigation as an example to understand the plant RSA. Seeds are surface sterilized by treating ethanol and diluted commercial bleach, and kept at 4 °C for stratification. The seeds are germinated and grown on a liquid half-MS medium on a polypropylene mesh supported by polycarbonate wedges. The plantlets are grown under standard growth conditions for the desired number days, gently picked out from the mesh, and submersed in water-containing agar plates. Each root system of the plantlets is spread gently on the water-filled plate with the help of a round art brush. These Petri plates are photographed or scanned at high resolution to document the RSA traits. The root traits, such as primary root, lateral roots, and branching zone, are measured using the freely available ImageJ software. This study provides techniques for measuring plant root characteristics in controlled environmental settings. We discuss how to (1) grow the plantlets, and collect and spread root samples, (2) obtain pictures of spread RSA samples, (3) capture the images, and (4) use image analysis software to quantify root attributes. The advantage of the present method is the versatile, easy, and efficient measurement of the RSA traits.


Asunto(s)
Arabidopsis , Polipropilenos , Raíces de Plantas , Fenotipo , Fosfatos , Agua
7.
Plant Cell Physiol ; 63(12): 1943-1953, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36264202

RESUMEN

Along with the rapidly increasing environmental contamination by heavy metals, the exposure of plants to chromium has also magnified, resulting in a declined productivity. Hexavalent chromium [Cr(VI)], the most toxic form of Cr, brings about changes in plant processes at morpho-physiological and biochemical levels. However, silicon (Si) is known to mitigate the impact of abiotic stresses in plants. Here, we demonstrate Si-mediated alleviation of Cr(VI) toxicity and its effects on root hair formation in rice seedlings. Reduced glutathione (GSH) and indole-3 acetic acid (IAA, an important auxin) were assessed for their involvement in root hair formation after the application of Si to Cr(VI)-stressed plants, and our results confirmed their crucial significance in such developmental processes. The expression analysis of genes involved in GSH biosynthesis (OsGS2) and regeneration (OsGR1), and auxin biosynthesis (OsTAA1 and OsYUCCA1) and transport (OsAUX1 and OsPIN1) corroborated their positive role in Si-mediated root hair formation in Cr(VI)-stressed rice seedlings. Moreover, the results indicated that nitric oxide (NO) seems a probable but not fundamental component in Si-mediated formation of roots in rice during exposure to Cr(VI) stress. In this study, the indispensable role of GSH and IAA, redox homeostasis of GSH and IAA biosynthesis and transport are discussed with regard to Si-mediated formation of root hairs in rice under Cr(VI) stress. The results of the study suggest that Si is a protective agent against Cr(VI) stress in rice, and the findings can be used to develop Cr(VI) stress-tolerant varieties of rice with enhanced productivity.


Asunto(s)
Oryza , Oryza/metabolismo , Silicio/farmacología , Silicio/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Plantones/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo
8.
Plant Cell Physiol ; 63(12): 1954-1967, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36377808

RESUMEN

Developments in the field of nanotechnology over the past few years have increased the prevalence of silver nanoparticles (AgNPs) in the environment, resulting in increased exposure of plants to AgNPs. Recently, various studies have reported the effect of AgNPs on plant growth at different concentrations. However, identifying the mechanisms and signaling molecules involved in plant responses against AgNPs stress is crucial to find an effective way to deal with the phytotoxic impacts of AgNPs on plant growth and development. Therefore, this study was envisaged to investigate the participation of ethylene in mediating the activation of AgNPs stress tolerance in rice (Oryza sativa L.) through a switch that regulates endogenous nitric oxide (NO) accumulation. Treatment of AgNPs alone hampered the growth of rice seedlings due to severe oxidative stress as a result of decline in sulfur assimilation, glutathione (GSH) biosynthesis and alteration in the redox status of GSH. These results are also accompanied by the higher endogenous NO level. However, addition of ethephon (a donor of ethylene) reversed the AgNP-induced effects. Though the application of silicon nanoparticles (SiNPs) alone promoted the growth of rice seedlings but, interestingly their application in combination with AgNPs enhanced the AgNP-induced toxicity in the seedlings through the same routes as exhibited in the case of AgNPs alone treatment. Interestingly, addition of ethephon reversed the negative effects of SiNPs under AgNPs stress. These results suggest that ethylene might act as a switch to regulate the level of endogenous NO, which in turn could be associated with AgNPs stress tolerance in rice. Furthermore, the results also indicated that addition of l-NG-nitro arginine methyl ester (l-NAME) (an inhibitor of endogenous NO synthesis) also reversed the toxic effects of SiNPs together with AgNPs, further suggesting that the low level of endogenous NO was associated with AgNPs stress tolerance. Overall, the results indicate that the low level of endogenous NO triggers AgNPs stress tolerance, while high level leads to AgNPs toxicity by regulating sulfur assimilation, GSH biosynthesis, redox status of GSH and oxidative stress markers. The results revealed that ethylene might act as a switch for regulating AgNPs stress in rice seedlings by controlling endogenous NO accumulation.


Asunto(s)
Nanopartículas del Metal , Oryza , Plantones/metabolismo , Óxido Nítrico , Oryza/fisiología , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Especies Reactivas de Oxígeno , Estrés Oxidativo , Glutatión/metabolismo , Plantas/metabolismo , Etilenos/farmacología , Azufre
9.
Plants (Basel) ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432862

RESUMEN

Moringa oleifera Lam. (MO) is a fast-growing drought-resistant tree belonging to the family Moringaceae and native to the Indian subcontinent and cultivated and/or naturalized worldwide with a semi-arid climate. MO is also popularly known as a miracle tree for its repertoire of nutraceutical, pharmacological, and phytochemical properties. The MO germplasm is collected, conserved, and maintained by various institutions across the globe. Various morphological, biochemical, and molecular markers are used for determining the genetic diversity in MO accessions. A higher yield of leaves and pods is often desirable for making various products with commercial viability and amenable for trade in the international market. Therefore, breeding elite varieties adapted to local agroclimatic conditions and in vitro propagation are viable and sustainable approaches. Here, we provide a comprehensive overview of MO germplasm conservation and various markers that are employed for assessing the genetic diversity among them. Further, breeding and in vitro propagation of MO for various desirable agronomic traits are discussed. Finally, trade and commerce of various functional and biofortified foods and non-food products are enumerated albeit with a need for a rigorous and stringent toxicity evaluation.

10.
Nanomaterials (Basel) ; 12(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35745438

RESUMEN

In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.

11.
Chemosphere ; 305: 135165, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35667508

RESUMEN

Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.


Asunto(s)
Desarrollo de la Planta , Silicio , Agricultura , Estrés Oxidativo , Plantas , Silicio/farmacología , Estrés Fisiológico
12.
Chemosphere ; 303(Pt 1): 134554, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35405200

RESUMEN

Chromium toxicity impairs the productivity of rice crops and raises a major concern worldwide and thus, it calls for unconventional and sustainable means of crop production. In this study, we identified the implication of zinc oxide nanoparticles (ZnO NPs) in promoting plant growth and ameliorating chromium-induced stress in seedlings of rice (Oryza sativa). This investigation demonstrates that the exogenous supplementation of ZnO NPs at 25 µM activates defense mechanisms conferring rice seedlings significant tolerance against stress imposed by the exposure of 100 µM Cr(VI). Further, supplementation of this nanofertilizer reversed the inhibitory effects of Cr(VI) on growth and photosynthetic efficiency. The growth promotion was primarily associated with the function of ZnO NPs in inducing activity of antioxidative enzymes i.e. APX, DHAR, MDHAR and GR belonging to the ascorbate-glutathione cycle in the Cr-exposed seedlings, exceeding the levels in control. The overexpression of these antioxidative genes correlated concomitantly with the decrease of oxidants including SOR and H2O2 and the increase in the levels of non-enzymatic antioxidants: AsA and GSH.


Asunto(s)
Nanopartículas , Oryza , Óxido de Zinc , Antioxidantes/metabolismo , Antioxidantes/farmacología , Cromo/toxicidad , Suplementos Dietéticos , Fertilizantes , Peróxido de Hidrógeno/farmacología , Nanopartículas/toxicidad , Oryza/fisiología , Estrés Oxidativo , Plantones , Óxido de Zinc/toxicidad
13.
Environ Pollut ; 300: 118887, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077838

RESUMEN

Aggrandized technological and industrial progression in past decades have occasioned immense depreciation in the quality of environment and ecosystem, majorly due to augmentation in the number of obnoxious pollutants incessantly being released in soil, water or air. Arsenic (As) is one such hazardous metalloid contaminating the environment which has the potential to detrimentally affect the life on earth. Even in minute quantity, As is known to cause various critical diseases in humans and toxicity in plants. Recent studies on nanoparticles (NPs) approve of their ability to qualify the criterion of becoming a potent tool for mitigating As-induced phytotoxicity. Nanoparticles are reported to promote plant growth under As-stress by stimulating various alterations at physiological, biochemical, and molecular levels. In this review, we provide an up-to-date compilation of research that has been carried out in comprehending the mechanisms utilized by nanoparticles including controlled As uptake and distribution in plants, maintenance of ROS homeostasis during stress and chelation and vacuolar sequestration of As so as to reduce the severity of toxicity induced by As, and potential areas of research in this field will also be indicated for future perspectives.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Nanopartículas , Contaminantes del Suelo , Arsénico/análisis , Ecosistema , Humanos , Nanopartículas/toxicidad , Sustancias Protectoras , Contaminantes del Suelo/análisis
14.
J Biotechnol ; 343: 71-82, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34534595

RESUMEN

The present study investigates ameliorative effect of silicon nanoparticles (SiNPs) and indole acetic acid (IAA) alone and in combination against hexavalent chromium (CrVI) toxicity in rice seedlings. The results of the study revealed protective effects of SiNPs and IAA against CrVI toxicity. The 100 µM of CrVI imposed toxic effects in rice seedlings at morphological, physiological and biochemical levels which coincided with increased level of intracellular CrVI and declined level of endogenous nitric oxide (NO). The CrVI enhanced levels of superoxide radicals (SOR) (59.51% and 50.1% in shoot and root, respectively) and H2O2 (19.5% and 23.69% in shoot and root, respectively). However, when SiNPs and IAA were applied to plants under CrVI stress, they enhanced tolerance and defence mechanisms as manifested in terms of increased biomass, endogenous NO, photosynthetic pigments, and antioxidants level. It was also noticed that CrVI arrested cell cycle at G2/M phase whereas growth was restored as compared to control when SiNPs and IAA were supplemented. Thus, the hypothesis that combined application of SiNPs and IAA will be effective in alleviating CrVI toxicity is validated from the results of this study. Moreover, in SiNPs and IAA-mediated mitigation of CrVI toxicity, endogenous NO has a positive role. The importance of the study will be that the combination of SiNPs and IAA can be utilized against heavy metal stress and even when supplied alone, they will enhance the crop productivity parameters with and without stress conditions.


Asunto(s)
Nanopartículas , Oryza , Cromo/toxicidad , Peróxido de Hidrógeno , Ácidos Indolacéticos , Estrés Oxidativo , Plantones , Silicio/toxicidad
15.
Plant Physiol Biochem ; 167: 713-722, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34500196

RESUMEN

The present study was aimed to investigate copper (Cu) toxicity alleviatory potential of silicon in Vigna radiata L. (mung bean) seedlings. Moreover, attention has also been paid to find out whether endogenous nitric oxide (NO) has any role in Si-governed alleviation of Cu stress. The length of root and shoot, fresh weight, and biochemical attributes were adversely affected by Cu exposure. However, application of Si rescued negative effects of Cu. Cu exposure decreased cell viability, and enhanced cell death and levels of oxidative stress markers (O2•‾, H2O2 and MDA), but Si significantly mitigated these effects of Cu. Application of Cu substantially stimulated the activities of superoxide dismutase and guaiacol peroxidase while inhibited activity of catalase. However, Si addition reversed this effect of Cu. Ascorbate and glutathione contents in roots and shoots were declined by Cu but stimulated by Si. Moreover, we noticed that addition of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and sodium tungstate (Tung) further augmented Cu toxicity but addition of sodium nitroprusside rescued adverse effects of L-NAME and Tung. Altogether, data suggest that though Si was able in alleviating Cu toxicity in mung bean seedlings but it requires endogenous nitric oxide.


Asunto(s)
Plantones , Vigna , Antioxidantes , Cobre/toxicidad , Peróxido de Hidrógeno , Óxido Nítrico , Estrés Oxidativo , Plantones/metabolismo , Silicio , Superóxido Dismutasa/metabolismo , Vigna/metabolismo
17.
Pharmaceutics ; 13(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34452135

RESUMEN

In this review, advancement in cancer therapy that shows a transition from conventional thermal therapies to laser-based photothermal therapies is discussed. Laser-based photothermal therapies are gaining popularity in cancer therapeutics due to their overall outcomes. In photothermal therapy, light is converted into heat to destruct the various types of cancerous growth. The role of nanoparticles as a photothermal agent is emphasized in this review article. Magnetic, as well as non-magnetic, nanoparticles have been effectively used in the photothermal-based cancer therapies. The discussion includes a critical appraisal of in vitro and in vivo, as well as the latest clinical studies completed in this area. Plausible evidence suggests that photothermal therapy is a promising avenue in the treatment of cancer.

18.
Nanomaterials (Basel) ; 11(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34067953

RESUMEN

The development of organic-inorganic hybrids or nanocomposite films is increasingly becoming attractive in light of their emerging applications. This research focuses on the formation of a unique nanocomposite film with enhanced elasticity suitable for many biomedical applications. The physical property measurement system and transmission electron microscopy were used to analyze Pt-Fe3O4 hybrid nanoparticles. These nanohybrids exhibited magnetic effects. They were further exploited to prepare the nanocomposite films in conjunction with a chitosan-g-glycolic acid organic fraction. The nanocomposite films were then examined using standard techniques: thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, and atomic force microscopy. Tensile strength testing demonstrated a significantly greater elastic strength of these nanocomposite films than pure chitosan films. The water absorption behavior of the nanocomposites was evaluated by measuring swelling degree. These nanocomposites were observed to have substantially improved physical properties. Such novel nanocomposites can be extended to various biomedical applications, which include drug delivery and tissue engineering.

19.
Crit Rev Biotechnol ; 41(5): 715-730, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33866893

RESUMEN

Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients. Moreover, a micromolar concentration of Al present in the soil is enough to induce several irreversible toxicity symptoms such as the rapid and transient over-generation of reactive oxygen species (ROS) such as superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), resulting in oxidative bursts. In addition, significant reductions in water and nutrient uptake occur which imposes severe stress in the plants. However, some plants have developed Al-tolerance by stimulating the secretion of organic acids like citrate, malate, and oxalate, from plant roots. Genes responsible for encoding such organic acids, play a critical role in Al tolerance. Several transporters involved in Al resistance mechanisms are members of the Aluminum-activated Malate Transporter (ALMT), Multidrug and Toxic compound Extrusion (MATE), ATP-Binding Cassette (ABC), Natural resistance-associated macrophage protein (Nramp), and aquaporin gene families. Therefore, in the present review, the discussion of the global extension and probable cause of Al in the environment and mechanisms of Al toxicity in plants are followed by detailed emphasis on tolerance mechanisms. We have also identified and categorized the important transporters that secrete organic acids and outlined their role in Al stress tolerance mechanisms in crop plants. The information provided here will be helpful for efficient exploration of the available knowledge to develop Al tolerant crop varieties.


Asunto(s)
Aluminio , Peróxido de Hidrógeno , Aluminio/metabolismo , Aluminio/toxicidad , Regulación de la Expresión Génica de las Plantas , Humanos , Raíces de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Suelo
20.
Sci Rep ; 10(1): 14078, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826929

RESUMEN

Reckless use of herbicides like butachlor (Buta) in the fields represents a serious threat to crop plants, and hence to their productivity. Silicon (Si) is well known for its implication in the alleviation of the effects of abiotic stresses; however, its role in mitigating Buta toxicity is not yet known. Therefore, this study was carried out to explore the role of Si (10 µM) in regulating Buta (4 µM) toxicity in rice seedlings. Buta reduced growth and photosynthesis, altered nitric oxide (NO) level and leaf and root anatomy, inhibited enzyme activities of the ascorbate-glutathione cycle (while transcripts of associated enzymes, increased except OsMDHAR), as well as its metabolites (ascorbate and glutathione) and uptake of nutrients (Mg, P, K, S, Ca, Fe, etc. except Na), while addition of Si reversed Buta-induced alterations. Buta stimulated the expression of Si channel and efflux transporter genes- Lsi1 and Lsi2 while the addition of Si further greatly induced their expression under Buta toxicity. Buta increased free proline accumulation by inducing the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and decreasing proline dehydrogenase (PDH) activity, while Si reversed these effects caused by Buta. Our results suggest that Si-governed mitigation of Buta toxicity is linked with favorable modifications in energy flux parameters of photosynthesis and leaf and root anatomy, up-regulation of Si channel and transporter genes, ascorbate-glutathione cycle and nutrient uptake, and lowering in oxidative stress. We additionally demonstrate that NO might have a crucial role in these responses.


Asunto(s)
Acetanilidas/antagonistas & inhibidores , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Herbicidas/antagonistas & inhibidores , Óxido Nítrico/farmacología , Nutrientes/metabolismo , Oryza/efectos de los fármacos , Prolina/metabolismo , Plantones/efectos de los fármacos , Silicio/farmacología , Carotenoides/metabolismo , Clorofila/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oryza/metabolismo , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA