Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 9(2): 4994-5002, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23059414

RESUMEN

The mechanism causing variability in DNA transfection efficacy for low-molecular-weight pDMAEMA (poly(2-(dimethylamino)ethyl methacrylate) and pDMAEMA-b-pHEMA (poly(2-(dimethyl amino)ethylmethacrylate)-block-poly(2-hydroxyl methacrylate)) has so far remained unclear, apart from the evidence of beneficial effects of the pHEMA grafting. This study has explicitly characterized the electrostatically driven self-assembly process of linear polymethacrylate polymers with DNA-generating nanocarriers for efficient gene transfection. Isothermal titration calorimetry (ITC) showed clear differences in binding-heat profiles of homo-polycationic and pHEMA grafted polymers with DNA. Polyethylene imine, a branched polycationic polymer of 25kDa with high transfection potential that has previously been successfully used in transfection experiments, demonstrated a heat flow profile that was partly identical to pDMAEMA-b-pHEMA. Computational molecular dynamics (MD) simulated the folding process of polymer in water from a linear to a coiled state: homo-pDMAEMA and pHEMA grafts reduced their overall positive charge accessibility upon folding, down to 45% and 63%, respectively. The homo-pDMAEMA formed the globular conformation more preferably than pHEMA grafts, thus impeding electrostatic interaction with DNA. These findings substantiate the known disadvantage of low-molecular-weight linear polymers compared to higher-molecular-weight polymers in transfection performance; here we have disclosed the ability of a non-cationic chain elongation to be beneficial for the self-assembly process. The combination of MD and ITC has proved to be a suitable approach for carrier-payload interaction studies and may be used to predict the efficacy of a polymer as a nanocarrier from the flexibility of its structure.


Asunto(s)
Calorimetría/métodos , ADN/metabolismo , Simulación de Dinámica Molecular , Transfección/normas , Animales , Masculino , Metacrilatos/química , Microscopía de Fuerza Atómica , Nylons/química , Tamaño de la Partícula , Polihidroxietil Metacrilato/química , Electricidad Estática , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...