Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Integr Biol (Camb) ; 10(11): 719-726, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30328449

RESUMEN

Notch signaling and blood flow regulate vascular formation and maturation, but how shear stress affects the different components of the Notch pathway in endothelial cells is poorly understood. We show that laminar shear stress results in a ligand specific gene expression profile in endothelial cells (HUVEC). JAG1 expression increases while DLL4 expression decreases. Jagged1 shows a unique response by clustering intracellularly six to nine hours after the onset of flow. The formation of the Jagged1 clusters requires protein production, ER export and endocytosis. Clustering is associated with reduced membrane levels but is not affected by Notch signaling activity. Jagged1 relocalization is reversible, the clusters disappear and membrane levels increase upon removal of shear stress. We further demonstrate that the signaling potential of endothelial cells is enhanced after exposure to shear stress. Together we demonstrate a Jagged1 specific shear stress response for Notch signaling in endothelial cells.


Asunto(s)
Regulación de la Expresión Génica , Proteína Jagged-1/metabolismo , Receptor Notch1/metabolismo , Receptor Notch3/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Arterias/patología , Biotinilación , Proteínas de Unión al Calcio , Células Cultivadas , Análisis por Conglomerados , Endocitosis , Perfilación de la Expresión Génica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Resistencia al Corte , Transducción de Señal , Estrés Mecánico
2.
Sci Rep ; 8(1): 13524, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202042

RESUMEN

We present a novel and highly reproducible process to fabricate transferable porous PDMS membranes for PDMS-based Organs-on-Chips (OOCs) using microelectromechanical systems (MEMS) fabrication technologies. Porous PDMS membranes with pore sizes down to 2.0 µm in diameter and a wide porosity range (2-65%) can be fabricated. To overcome issues normally faced when using replica moulding and extend the applicability to most OOCs and improve their scalability and reproducibility, the process includes a sacrificial layer to easily transfer the membranes from a silicon carrier to any PDMS-based OOC. The highly reliable fabrication and transfer method does not need of manual handling to define the pore features (size, distribution), allowing very thin (<10 µm) functional membranes to be transferred at chip level with a high success rate (85%). The viability of cell culturing on the porous membranes was assessed by culturing two different cell types on transferred membranes in two different OOCs. Human umbilical endothelial cells (HUVEC) and MDA-MB-231 (MDA) cells were successfully cultured confirming the viability of cell culturing and the biocompatibility of the membranes. The results demonstrate the potential of controlling the porous membrane features to study cell mechanisms such as transmigrations, monolayer formation, and barrier function. The high control over the membrane characteristics might consequently allow to intentionally trigger or prevent certain cellular responses or mechanisms when studying human physiology and pathology using OOCs.


Asunto(s)
Órganos Artificiales , Dimetilpolisiloxanos/química , Dispositivos Laboratorio en un Chip , Membranas Artificiales , Microfluídica/métodos , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ensayo de Materiales , Porosidad , Reproducibilidad de los Resultados
3.
Sci Rep ; 8(1): 6392, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29686270

RESUMEN

Angiogenesis, the formation of new blood vessels, is a vital process for tissue growth and development. The Notch cell-cell signalling pathway plays an important role in endothelial cell specification during angiogenesis. Dll4 - Notch1 signalling directs endothelial cells into migrating tip or proliferating stalk cells. We used the directing properties of Dll4 to spatially control endothelial cell fate and the direction of endothelial sprouts. We created linear arrays of immobilized Dll4 using micro contact printing. HUVECs were seeded perpendicular to these Dll4 patterns using removable microfluidic channels. The Notch activating properties of surface immobilized Dll4 were confirmed by qPCR. After induction of sprouting, microscopic images of fluorescently labelled endothelial sprouts were analysed to determine the direction and the efficiency of controlled sprouting (Ecs). Directionality analysis of the sprouts showed the Dll4 pattern changes sprout direction from random to unidirectional. This was confirmed by the increase of Ecs from 54.5 ± 3.1% for the control, to an average of 84.7 ± 1.86% on the Dll4 patterned surfaces. Our data demonstrates a surface-based method to spatially pattern Dll4 to gain control over endothelial sprout location and direction. This suggests that spatial ligand patterning can be used to provide control over (neo) vascularization.


Asunto(s)
Endotelio Vascular/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Unión al Calcio , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ligandos , Microfluídica , Neovascularización Fisiológica , Transducción de Señal
4.
J Biol Chem ; 276(19): 16456-63, 2001 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-11278541

RESUMEN

The intermediate filament protein nestin is expressed during early stages of development in the central nervous system and in muscle tissues. Nestin expression is associated with morphologically dynamic cells, such as dividing and migrating cells. However, little is known about regulation of nestin during these cellular processes. We have characterized the phosphorylation-based regulation of nestin during different stages of the cell cycle in a neuronal progenitor cell line, ST15A. Confocal microscopy of nestin organization and (32)P in vivo labeling studies show that the mitotic reorganization of nestin is accompanied by elevated phosphorylation of nestin. The phosphorylation-induced alterations in nestin organization during mitosis in ST15A cells are associated with partial disassembly of nestin filaments. Comparative in vitro and in vivo phosphorylation studies identified cdc2 as the primary mitotic kinase and Thr(316) as a cdc2-specific phosphorylation site on nestin. We generated a phosphospecific nestin antibody recognizing the phosphorylated form of this site. By using this antibody we observed that nestin shows constitutive phosphorylation at Thr(316), which is increased during mitosis. This study shows that nestin is reorganized during mitosis and that cdc2-mediated phosphorylation is an important regulator of nestin organization and dynamics during mitosis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso , Secuencia de Aminoácidos , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Sistema Nervioso Central , Proteínas de Filamentos Intermediarios/química , Interfase , Mitosis/efectos de los fármacos , Mitosis/fisiología , Nestina , Nocodazol/farmacología , Fosfopéptidos/química , Fosforilación , Ratas , Treonina/metabolismo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...