Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(4): 4600-4612, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313538

RESUMEN

Multifunctional nanocomposites have shown great interest in clean energy systems and environmental applications in recent years. Herein, we first reported the synthesis of Dy2NiMnO6 (DNMO)/reduced graphene oxide (rGO) nanocomposites utilizing a hybrid approach involving sol-gel and solvothermal processes. Subsequently, we investigated these nanocomposites for their applications in catalysis, electromagnetic interference shielding, and supercapacitors. A morphological study suggests spherical-shaped DNMO nanoparticles of an average size of 382 nm that are uniformly distributed throughout the surface without any agglomeration. The as-prepared nanocomposites were used as catalysts to investigate the catalytic reduction of 4-nitrophenol in the presence of NaBH4. DNMO/rGO nanocomposites demonstrate superior catalytic activity when compared with bare DNMO, with the rate of reduction being influenced by the composition of the DNMO/rGO nanocomposites. In addition, novel multifunctional DNMO/rGO was incorporated into polyvinylidene difluoride (PVDF) to develop a flexible nanocomposite for electromagnetic shielding applications and exhibited a shielding effectiveness of 6 dB with 75% attenuation at a frequency of 8.5 GHz compared to bare PVDF and PVDF-DNMO nanocomposite. Furthermore, the electrochemical performance of DNMO/rGO nanocomposites was investigated as an electrode material for supercapacitors, exhibiting the highest specific capacitance of 260 F/g at 1 A/g. These findings provide valuable insights into the design of DNMO/rGO nanocomposites with remarkable performance in sustainable energy and environmental applications.

2.
Sci Rep ; 11(1): 24341, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934094

RESUMEN

Cellular temperature and pH govern many cellular physiologies, especially of cancer cells. Besides, attaining higher cellular temperature plays key role in therapeutic efficacy of hyperthermia treatment of cancer. This requires bio-compatible, non-toxic and sensitive probe with dual sensing ability to detect temperature and pH variations. In this regard, fluorescence based nano-sensors for cancer studies play an important role. Therefore, a facile green synthesis of orange carbon nano-dots (CND) with high quantum yield of 90% was achieved and its application as dual nano-sensor for imaging intracellular temperature and pH was explored. CND was synthesized from readily available, bio-compatible citric acid and rhodamine 6G hydrazide using solvent-free and simple heating technique requiring purification by dialysis. Although the particle size of 19 nm (which is quite large for CND) was observed yet CND exhibits no surface defects leading to decrease in photoluminescence (PL). On the contrary, very high fluorescence was observed along with good photo-stability. Temperature and pH dependent fluorescence studies show linearity in fluorescence intensity which was replicated in breast cancer cells. In addition, molecular nature of PL of CND was established using pH dependent fluorescence study. Together, the current investigation showed synthesis of highly fluorescent orange CND, which acts as a sensitive bio-imaging probe: an optical nano-thermal or nano-pH sensor for cancer-related studies.


Asunto(s)
Neoplasias de la Mama/patología , Carbono/química , Colorantes Fluorescentes/química , Puntos Cuánticos , Temperatura , Femenino , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7
3.
Artículo en Inglés | MEDLINE | ID: mdl-34986753

RESUMEN

Investigation of electrochemical and spectroscopic characteristics of anti-human immunodeficiency virus (HIV) drug provides important information related to the efficacy of the drug in relation with its interaction with several important biomolecules. In the present investigation we have developed an electrochemical and spectroscopic method for the detection of anti-HIV drug Darunavir (DRV) using the carbon paste as the working electrode. The analytical method has generated the detection limit of 1.86 µM (S/N = 3). The electrochemical investigations have also been carried out for the exploration of the interaction of DRV with double stranded deoxyribose nucleic acid DNA (dsDNA) and human serum albumin (HSA). Electrochemical investigations were supported from the spectroscopic measurements in evaluating the interaction. The results obtained from voltammetric and spectroscopic experiments shows strong interaction between the drug and the macromolecules. It has been observed that DRV forms strong complexes with HSA and dsDNA with the formation constants of 2.7 × 104 and 4.2 × 104 M-1 respectively. The formation constants are varied with the pH of the solution, which leads to the assertion of the mechanism of the interaction between DRV and dsDNA.


Asunto(s)
Fármacos Anti-VIH/química , Darunavir/química , Albúmina Sérica Humana/química , ADN , Electrodos , Infecciones por VIH/tratamiento farmacológico , Humanos
4.
Bioelectrochemistry ; 130: 107330, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31323489

RESUMEN

In the present investigation the electrochemical behaviour of the drug, Ciprofloxacin (Cf) and its interaction with the Bovine Serum Albumin (BSA) is reported. UV-Visible Spectroscopy (UV-Vis) and Spectro-electrochemical measurements were carried out to quantify the charge transfer process in Cf. Analysis of the results obtained from cyclic voltammetry (CV) measurements indicated the electrochemical oxidation of Cf followed mixed adsorption and diffusion control process. The spectro-electrochemical investigations were carried out and the modification of the spectral peaks were monitored to obtain the mechanism of the electrochemical oxidation process of Cf. Interaction of Cf with Bovine Serum Albumin (BSA) were investigated using electrochemical, spectroscopic and spectro-electrochemical experiments. Important electro-kinetic parameters like; the electron transfer property, binding constant and diffusivity of the Cf/BSA complex were investigated. Electrochemistry with an ultra-microelectrode was utilised to investigate the diffusivity of the drug and its complex with BSA, which supports the strong binding of Cf with BSA.


Asunto(s)
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Albúmina Sérica Bovina/metabolismo , Animales , Antibacterianos/química , Bovinos , Ciprofloxacina/química , Técnicas Electroquímicas , Unión Proteica , Espectrofotometría Ultravioleta
5.
ACS Omega ; 3(12): 17936-17946, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458386

RESUMEN

A facile hydrothermal method is adopted for the synthesis of hierarchical flowerlike nickel sulfide nanostructure materials and their composite with carbon quantum dot (NiS/C-dot) composite. The composite material exhibited good performance for electrochemical energy-storage devices as supercapacitor with a specific capacity of 880 F g-1 at a current density of 2 A g-1. The material remained stable up to the tested 2000 charge-discharge cycles. Carbon quantum dots of size 1.3 nm were synthesized from natural sources and the favorable electronic and surface property of C-dots were utilized for improvement of the supercapacitor performance of NiS. The results from Tafel analysis, double-layer capacitance, and the impedance measurement reveal that the incorporation of C-dots inside the NiS matrix has improved the charge-transfer process, which is mainly responsible for the enhancement of the supercapacitive property of the composite materials.

6.
J AOAC Int ; 98(2): 506-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25905757

RESUMEN

An electrochemical method was developed for the determination of Hg at ultratrace levels using an Au nanoparticle (AuNP) array modified carbon paste electrode (CPE) by anodic stripping voltammetry. Scanning electron microscopy measurements imaged the size and shape of AuNPs on the CPE substrate; it was possible to tune the size and the NP density by changing the deposition time and medium. Electrochemical characterization of the AuNP modified CPE was carried out using cyclic voltammetry and electrochemical impedance measurements. Interferences due to some commonly occurring metal ions and surfactants on the stripping peak of Hg were also investigated. The 3σ detection limit for Hg using the AuNP modified electrode was as 0.24 µg/L. This method was applied to determine Hg in soil samples.


Asunto(s)
Carbono/química , Técnicas Electroquímicas , Oro/química , Mercurio/análisis , Nanopartículas del Metal/química , Electrodos , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...