Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2309326121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483986

RESUMEN

Hsp90s are ATP-dependent chaperones that collaborate with co-chaperones and Hsp70s to remodel client proteins. Grp94 is the ER Hsp90 homolog essential for folding multiple secretory and membrane proteins. Grp94 interacts with the ER Hsp70, BiP, although the collaboration of the ER chaperones in protein remodeling is not well understood. Grp94 undergoes large-scale conformational changes that are coupled to chaperone activity. Within Grp94, a region called the pre-N domain suppresses ATP hydrolysis and conformational transitions to the active chaperone conformation. In this work, we combined in vivo and in vitro functional assays and structural studies to characterize the chaperone mechanism of Grp94. We show that Grp94 directly collaborates with the BiP chaperone system to fold clients. Grp94's pre-N domain is not necessary for Grp94-client interactions. The folding of some Grp94 clients does not require direct interactions between Grp94 and BiP in vivo, suggesting that the canonical collaboration may not be a general chaperone mechanism for Grp94. The BiP co-chaperone DnaJB11 promotes the interaction between Grp94 and BiP, relieving the pre-N domain suppression of Grp94's ATP hydrolysis activity. In structural studies, we find that ATP binding by Grp94 alters the ATP lid conformation, while BiP binding stabilizes a partially closed Grp94 intermediate. Together, BiP and ATP push Grp94 into the active closed conformation for client folding. We also find that nucleotide binding reduces Grp94's affinity for clients, which is important for productive client folding. Alteration of client affinity by nucleotide binding may be a conserved chaperone mechanism for a subset of ER chaperones.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Pliegue de Proteína , Humanos , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Nucleótidos , Adenosina Trifosfato/metabolismo
2.
Membranes (Basel) ; 14(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392672

RESUMEN

KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles with the residues T71, S74 and G78 situated along the concave face of the curved helix. During the interaction of KCNE3 and KCNQ1, KCNE3 pushes its transmembrane domain against KCNQ1 to lock the voltage sensor in its depolarized conformation. A cryo-EM study of KCNE3 complexed with KCNQ1 in nanodiscs suggested a deviation of the KCNE3 structure from its independent structure in isotropic bicelles. Despite the biological significance of KCNE3 TMD, the conformational properties of KCNE3 are poorly understood. Here, all atom molecular dynamics (MD) simulations were utilized to investigate the conformational dynamics of the transmembrane domain of KCNE3 in a lipid bilayer containing a mixture of POPC and POPG lipids (3:1). Further, the effect of the interaction impairing mutations (V72A, I76A and F68A) on the conformational properties of the KCNE3 TMD in lipid bilayers was investigated. Our MD simulation results suggest that the KCNE3 TMD adopts a nearly linear α helical structural conformation in POPC-POPG lipid bilayers. Additionally, the results showed no significant change in the nearly linear α-helical conformation of KCNE3 TMD in the presence of interaction impairing mutations within the sampled time frame. The KCNE3 TMD is more stable with lower flexibility in comparison to the N-terminal and C-terminal of KCNE3 in lipid bilayers. The overall conformational flexibility of KCNE3 also varies in the presence of the interaction-impairing mutations. The MD simulation data further suggest that the membrane bilayer width is similar for wild-type KCNE3 and KCNE3 containing mutations. The Z-distance measurement data revealed that the TMD residue site A69 is close to the lipid bilayer center, and residue sites S57 and S82 are close to the surfaces of the lipid bilayer membrane for wild-type KCNE3 and KCNE3 containing interaction-impairing mutations. These results agree with earlier KCNE3 biophysical studies. The results of these MD simulations will provide complementary data to the experimental outcomes of KCNE3 to help understand its conformational dynamic properties in a more native lipid bilayer environment.

3.
J Phys Chem B ; 127(43): 9236-9247, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37856870

RESUMEN

Lysis of Gram-negative bacteria by dsDNA phages is accomplished through either the canonical holin-endolysin pathway or the pinholin-SAR endolysin pathway. During lysis, the outer membrane (OM) is disrupted, typically by two-component spanins or unimolecular spanins. However, in the absence of spanins, phages use alternative proteins called Disruptin to disrupt the OM. The Disruptin family includes the cationic antimicrobial peptide gp28, which is found in the virulent podophage φKT. In this study, EPR spectroscopy was used to analyze the dynamics and topology of gp28 incorporated into a lipid bilayer, revealing differences in mobility, depth parameter, and membrane interaction among different segments and residues of the protein. Our results indicate that multiple points of helix 2 and helix 3 interact with the phospholipid membrane, while others are solvent-exposed, suggesting that gp28 is a surface-bound peptide. The CW-EPR power saturation data and helical wheel analysis confirmed the amphipathic-helical structure of gp28. Additionally, course-grain molecular dynamics simulations were further used to develop the structural model of the gp28 peptide associated with the lipid bilayers. Based on the data obtained in this study, we propose a structural topology model for gp28 with respect to the membrane. This work provides important insights into the structural and dynamic properties of gp28 incorporated into a lipid bilayer environment.


Asunto(s)
Bacteriófagos , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia por Spin del Electrón , Bacteriófagos/metabolismo , Bacterias Gramnegativas/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo
4.
Biophys Chem ; 301: 107080, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531799

RESUMEN

One of the major challenges in solubilization of membrane proteins is to find the optimal physiological environment for their biophysical studies. EPR spectroscopy is a powerful biophysical technique for studying the structural and dynamic properties of macromolecules. However, the challenges in the membrane protein sample preparation and flexible motion of the spin label limit the utilization of EPR spectroscopy to a majority of membrane protein systems in a physiological membrane-bound state. Recently, lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have emerged as a membrane mimetic system for investigating the structural studies of membrane proteins. However, its detail characterization for membrane protein studies is still poorly understood. Recently, we characterized the potassium channel membrane protein KCNQ1 voltage sensing domain (KCNQ1-VSD) and KCNE1 reconstituted into lipodisq nanoparticles using EPR spectroscopy. In this study, the potassium channel accessory protein KCNE3 containing flexible N- and C-termini was encapsulated into proteoliposomes and lipodisq nanoparticles and characterized for studying its structural and dynamic properties using nitroxide based site-directed spin labeling EPR spectroscopy. CW-EPR lineshape analysis data indicated an increase in spectral line broadenings with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated an enhanced quality of distance measurements with an increase in the phase memory time (Tm) values upon incorporation of the sample into lipodisq nanoparticles, when compared to proteoliposomes. These results agree with the solution NMR structural structure of the KCNE3 and EPR studies of other membrane proteins in lipodisq nanoparticles. This study along with our earlier studies will provide the reference characterization data that will provide benefit to the membrane protein researchers for studying structural dynamics of challenging membrane proteins.


Asunto(s)
Nanopartículas , Canales de Potasio con Entrada de Voltaje , Humanos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas de la Membrana/química , Canal de Potasio KCNQ1 , Poliestirenos/química , Marcadores de Spin , Nanopartículas/química
5.
Biochim Biophys Acta Biomembr ; 1865(5): 184154, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023970

RESUMEN

The lytic cycle of bacteriophage φ21 for the infected E. coli is initiated by pinholin S21, which determines the timing of host cell lysis through the function of pinholin (S2168) and antipinholin (S2171). The activity of pinholin or antipinholin directly depends on the function of two transmembrane domains (TMDs) within the membrane. For active pinholin, TMD1 externalizes and lies on the surface while TMD2 remains incorporated inside the membrane forming the lining of the small pinhole. In this study, spin labeled pinholin TMDs were incorporated separately into mechanically aligned POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) lipid bilayers and investigated with electron paramagnetic resonance (EPR) spectroscopy to determine the topology of both TMD1 and TMD2 with respect to the lipid bilayer; the TOAC (2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid) spin label was used here because it attaches to the backbone of a peptide and is very rigid. TMD2 was found to be nearly colinear with the bilayer normal (n) with a helical tilt angle of 16 ± 4° while TMD1 lies on or near the surface with a helical tilt angle of 84 ± 4°. The order parameters (~0.6 for both TMDs) obtained from our alignment study were reasonable, which indicates the samples incorporated inside the membrane were well aligned with respect to the magnetic field (B0). The data obtained from this study supports previous findings on pinholin: TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. In this study, the helical tilt angle of TMD1 was measured for the first time. For TMD2 our experimental data corroborates the findings of the previously reported helical tilt angle by the Ulrich group.


Asunto(s)
Escherichia coli , Membrana Dobles de Lípidos , Espectroscopía de Resonancia por Spin del Electrón , Membrana Dobles de Lípidos/química , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Marcadores de Spin
6.
J Phys Chem B ; 127(17): 3757-3765, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37078594

RESUMEN

Integral membrane proteins are embedded into cell membranes by spanning the width of the lipid bilayer. They play an essential role in important biological functions for the survival of living organisms. Their functions include the transportation of ions and molecules across the cell membrane and initiating signaling pathways. The dynamic behavior of integral membrane proteins is very important for their function. Due to the complex behavior of integral membrane proteins in the cell membrane, studying their structural dynamics using biophysical approaches is challenging. Here, we concisely discuss challenges and recent advances in technical and methodological aspects of biophysical approaches for gleaning dynamic properties of integral membrane proteins to answer pertinent biological questions associated with these proteins.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Proteínas de la Membrana/química , Membrana Celular/química , Membrana Dobles de Lípidos/química , Membranas/metabolismo , Biomimética
7.
Biochim Biophys Acta Biomembr ; 1865(4): 184138, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764474

RESUMEN

Biological membranes are essential in providing the stability of membrane proteins in a functional state. Functionally stable homogeneous sample is required for biophysical electron paramagnetic resonance (EPR) studies of membrane proteins for obtaining pertinent structural dynamics of the protein. Significant progresses have been made for the optimization of the suitable membrane environments required for biophysical EPR measurements. However, no universal membrane mimetic system is available that can solubilize all membrane proteins suitable for biophysical EPR studies while maintaining the functional integrity. Great efforts are needed to optimize the sample condition to obtain better EPR data quality of membrane proteins that can provide meaningful information on structural dynamics. In this mini-review, we will discuss important aspects of membrane mimetics for biophysical EPR measurements and current progress with some of the recent examples.


Asunto(s)
Biomimética , Proteínas de la Membrana , Espectroscopía de Resonancia por Spin del Electrón , Proteínas de la Membrana/química , Membranas/metabolismo , Membrana Celular/metabolismo
8.
Biochim Biophys Acta Biomembr ; 1865(2): 184083, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36370910

RESUMEN

The S protein from bacteriophage lambda is a three-helix transmembrane protein produced by the prophage which accumulates in the host membrane during late gene expression. It is responsible for the first step in lysing the host cell at the end of the viral life cycle by multimerizing together to form large pores which permeabilize the host membrane to allow the escape of virions. Several previous studies have established a model for the assembly of holin into functional holes and the manner in which they pack together, but it is still not fully understood how the very rapid transition from monomer or dimer to multimeric pore occurs with such precise timing once the requisite threshold is reached. Here, site-directed spin labeling with a nitroxide label at introduced cysteine residues is used to corroborate existing topological data from a crosslinking study of the multimerized holin by EPR spectroscopy. CW-EPR spectral lineshape analysis and power saturation data are consistent with a three-helix topology with an unstructured C-terminal domain, as well as at least one interface on transmembrane domain 1 which is exposed to the lumen of the hole, and a highly constrained steric environment suggestive of a tight helical packing interface at transmembrane domain 2.


Asunto(s)
Bacteriófago lambda , Cisteína , Bacteriófago lambda/genética , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Cisteína/metabolismo , Proteínas de la Membrana/metabolismo , Marcadores de Spin
9.
Biochim Biophys Acta Biomembr ; 1864(11): 184010, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870481

RESUMEN

KCNQ1 (Kv7.1 or KvLQT1) is a voltage-gated potassium ion channel that is involved in the ventricular repolarization following an action potential in the heart. It forms a complex with KCNE1 in the heart and is the pore forming subunit of slow delayed rectifier potassium current (Iks). Mutations in KCNQ1, leading to a dysfunctional channel or loss of activity have been implicated in a cardiac disorder, long QT syndrome. In this study, we report the overexpression, purification, biochemical characterization of human KCNQ1100-370, and lipid bilayer dynamics upon interaction with KCNQ1100-370. The recombinant human KCNQ1 was expressed in Escherichia coli and purified into n-dodecylphosphocholine (DPC) micelles. The purified KCNQ1100-370 was biochemically characterized by SDS-PAGE electrophoresis, western blot and nano-LC-MS/MS to confirm the identity of the protein. Circular dichroism (CD) spectroscopy was utilized to confirm the secondary structure of purified protein in vesicles. Furthermore, 31P and 2H solid-state NMR spectroscopy in DPPC/POPC/POPG vesicles (MLVs) indicated a direct interaction between KCNQ100-370 and the phospholipid head groups. Finally, a visual inspection of KCNQ1100-370 incorporated into MLVs was confirmed by transmission electron microscopy (TEM). The findings of this study provide avenues for future structural studies of the human KCNQ1 ion channel to have an in depth understanding of its structure-function relationship.


Asunto(s)
Síndrome de QT Prolongado , Canales de Potasio con Entrada de Voltaje , Humanos , Canal de Potasio KCNQ1/metabolismo , Potasio/metabolismo , Canales de Potasio , Canales de Potasio con Entrada de Voltaje/metabolismo , Espectrometría de Masas en Tándem
10.
Biochim Biophys Acta Biomembr ; 1864(10): 183974, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716725

RESUMEN

KCNE3 is a single transmembrane protein of the KCNE family that modulates the function and trafficking of several voltage-gated potassium channels, including KCNQ1. Structural studies of KCNE3 have been previously conducted in a wide range of model membrane mimics. However, it is important to assess the impact of the membrane mimics used on the observed conformation and dynamics. In this study, we have optimized a method for the reconstitution of the KCNE3 into POPC/POPG lipid bilayer vesicles for electron paramagnetic resonance (EPR) spectroscopy. Our CD spectroscopic data suggested that the degree of regular secondary structure for KCNE3 protein reconstituted into lipid bilayered vesicle is significantly higher than in DPC detergent micelles. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) was used to probe the structural dynamics of S49C, M59C, L67C, V85C, and S101C mutations of KCNE3 in both DPC micelles and in POPC/POPG lipid bilayered vesicles. Our CW-EPR power saturation data suggested that the site S74C is buried inside the lipid bilayered membrane while the site V85C is located outside the membrane, in contrast to DPC micelle results. These results suggest that the KCNE3 micelle structures need to be refined using data obtained in the lipid bilayered vesicles in order to ascertain the native structure of KCNE3. This work will provide guidelines for detailed structural studies of KCNE3 in a more native membrane environment and comparing the lipid bilayer results to the isotropic bicelle structure and to the KCNQ1-bound cryo-EM structure.


Asunto(s)
Membrana Dobles de Lípidos , Canales de Potasio con Entrada de Voltaje , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Canal de Potasio KCNQ1/metabolismo , Membrana Dobles de Lípidos/química , Micelas , Canales de Potasio con Entrada de Voltaje/metabolismo
11.
Membranes (Basel) ; 12(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35629795

RESUMEN

KCNE3 is a potassium channel accessory transmembrane protein that regulates the function of various voltage-gated potassium channels such as KCNQ1. KCNE3 plays an important role in the recycling of potassium ion by binding with KCNQ1. KCNE3 can be found in the small intestine, colon, and in the human heart. Despite its biological significance, there is little information on the structural dynamics of KCNE3 in native-like membrane environments. Molecular dynamics (MD) simulations are a widely used as a tool to study the conformational dynamics and interactions of proteins with lipid membranes. In this study, we have utilized all-atom molecular dynamics simulations to characterize the molecular motions and the interactions of KCNE3 in a bilayer composed of: a mixture of POPC and POPG lipids (3:1), POPC alone, and DMPC alone. Our MD simulation results suggested that the transmembrane domain (TMD) of KCNE3 is less flexible and more stable when compared to the N- and C-termini of KCNE3 in all three membrane environments. The conformational flexibility of N- and C-termini varies across these three lipid environments. The MD simulation results further suggested that the TMD of KCNE3 spans the membrane width, having residue A69 close to the center of the lipid bilayers and residues S57 and S82 close to the lipid bilayer membrane surfaces. These results are consistent with previous biophysical studies of KCNE3. The outcomes of these MD simulations will help design biophysical experiments and complement the experimental data obtained on KCNE3 to obtain a more detailed understanding of its structural dynamics in the native membrane environment.

12.
J Biol Chem ; 298(3): 101690, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35148995

RESUMEN

The YidC family of proteins are membrane insertases that catalyze the translocation of the periplasmic domain of membrane proteins via a hydrophilic groove located within the inner leaflet of the membrane. All homologs have a strictly conserved, positively charged residue in the center of this groove. In Bacillus subtilis, the positively charged residue has been proposed to be essential for interacting with negatively charged residues of the substrate, supporting a hypothesis that YidC catalyzes insertion via an early-step electrostatic attraction mechanism. Here, we provide data suggesting that the positively charged residue is important not for its charge but for increasing the hydrophilicity of the groove. We found that the positively charged residue is dispensable for Escherichia coli YidC function when an adjacent residue at position 517 was hydrophilic or aromatic, but was essential when the adjacent residue was apolar. Additionally, solvent accessibility studies support the idea that the conserved positively charged residue functions to keep the top and middle of the groove sufficiently hydrated. Moreover, we demonstrate that both the E. coli and Streptococcus mutans YidC homologs are functional when the strictly conserved arginine is replaced with a negatively charged residue, provided proper stabilization from neighboring residues. These combined results show that the positively charged residue functions to maintain a hydrophilic microenvironment in the groove necessary for the insertase activity, rather than to form electrostatic interactions with the substrates.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Bacillus subtilis/enzimología , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Relación Estructura-Actividad
13.
Biochim Biophys Acta Biomembr ; 1864(3): 183836, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906602

RESUMEN

There have recently been advances in methods for detecting local secondary structures of membrane protein using electron paramagnetic resonance (EPR). A three pulsed electron spin echo envelope modulation (ESEEM) approach was used to determine the local helical secondary structure of the small hole forming membrane protein, S21 pinholin. This ESEEM approach uses a combination of site-directed spin labeling and 2H-labeled side chains. Pinholin S21 is responsible for the permeabilization of the inner cytosolic membrane of double stranded DNA bacteriophage host cells. In this study, we report on the overall global helical structure using circular dichroism (CD) spectroscopy for the active form and the negative-dominant inactive mutant form of S21 pinholin. The local helical secondary structure was confirmed for both transmembrane domains (TMDs) for the active and inactive S21 pinholin using the ESEEM spectroscopic technique. Comparison of the ESEEM normalized frequency domain intensity for each transmembrane domain gives an insight into the α-helical folding nature of these domains as opposed to a π or 310-helix which have been observed in other channel forming proteins.


Asunto(s)
Bacteriófagos/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas Virales/química , Secuencia de Aminoácidos , Estructura Secundaria de Proteína
14.
Biochim Biophys Acta Biomembr ; 1863(12): 183771, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34499883

RESUMEN

The bacteriophage infection cycle is terminated at a predefined time to release the progeny virions via a robust lytic system composed of holin, endolysin, and spanin proteins. Holin is the timekeeper of this process. Pinholin S21 is a prototype holin of phage Φ21, which determines the timing of host cell lysis through the coordinated efforts of pinholin and antipinholin. However, mutations in pinholin and antipinholin play a significant role in modulating the timing of lysis depending on adverse or favorable growth conditions. Earlier studies have shown that single point mutations of pinholin S21 alter the cell lysis timing, a proxy for pinholin function as lysis is also dependent on other lytic proteins. In this study, continuous wave electron paramagnetic resonance (CW-EPR) power saturation and double electron-electron resonance (DEER) spectroscopic techniques were used to directly probe the effects of mutations on the structure and conformational changes of pinholin S21 that correlate with pinholin function. DEER and CW-EPR power saturation data clearly demonstrate that increased hydrophilicity induced by residue mutations accelerate the externalization of antipinholin transmembrane domain 1 (TMD1), while increased hydrophobicity prevents the externalization of TMD1. This altered hydrophobicity is potentially accelerating or delaying the activation of pinholin S21. It was also found that mutations can influence intra- or intermolecular interactions in this system, which contribute to the activation of pinholin and modulate the cell lysis timing. This could be a novel approach to analyze the mutational effects on other holin systems, as well as any other membrane protein in which mutation directly leads to structural and conformational changes.


Asunto(s)
Bacteriófagos/genética , Endopeptidasas/genética , Proteínas de la Membrana/genética , Proteínas Virales/genética , Virión/genética , Bacteriófagos/química , Transporte Biológico , Muerte Celular/genética , Endopeptidasas/química , Proteínas de la Membrana/química , Mutación/genética , Proteínas Virales/química , Virión/química
15.
J Phys Chem B ; 124(50): 11396-11405, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33289567

RESUMEN

Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.


Asunto(s)
Bacteriófagos , Proteínas Virales , Pared Celular , Espectroscopía de Resonancia por Spin del Electrón , Membrana Dobles de Lípidos
17.
J Phys Chem B ; 124(26): 5370-5379, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32501696

RESUMEN

The bacteriophage infection cycle plays a crucial role in recycling the world's biomass. Bacteriophages devise various cell lysis systems to strictly control the length of the infection cycle for an efficient phage life cycle. Phages evolved with lysis protein systems, which can control and fine-tune the length of this infection cycle depending on the host and growing environment. Among these lysis proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time and concentration hence known as the simplest molecular clock. Pinholin S21 is the holin from phage Φ21, which defines the cell lysis time through a predefined ratio of active pinholin and antipinholin (inactive form of pinholin). Active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously we reported the structural dynamics and topology of active pinholin S2168. Currently, there is no detailed structural study of the antipinholin using biophysical techniques. In this study, the structural dynamics and topology of antipinholin S2168IRS in DMPC proteoliposomes is investigated using electron paramagnetic resonance (EPR) spectroscopic techniques. Continuous-wave (CW) EPR line shape analysis experiments of 35 different R1 side chains of S2168IRS indicated restricted mobility of the transmembrane domains (TMDs), which were predicted to be inside the lipid bilayer when compared to the N- and C-termini R1 side chains. In addition, the R1 accessibility test performed on 24 residues using the CW-EPR power saturation experiment indicated that TMD1 and TMD2 of S2168IRS were incorporated into the lipid bilayer where N- and C-termini were located outside of the lipid bilayer. Based on this study, a tentative model of S2168IRS is proposed where both TMDs remain incorporated into the lipid bilayer and N- and C-termini are located outside of the lipid bilayer. This work will pave the way for the further studies of other holins using biophysical techniques and will give structural insights into these biological clocks in molecular detail.


Asunto(s)
Bacteriófagos , Membrana Dobles de Lípidos , Bacteriófagos/genética , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Virales
18.
Biomolecules ; 10(5)2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414134

RESUMEN

Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.


Asunto(s)
Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Detección de Spin/métodos
19.
Biochim Biophys Acta Biomembr ; 1862(7): 183257, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32147355

RESUMEN

Pinholins are a family of lytic membrane proteins responsible for the lysis of the cytosolic membrane in host cells of double stranded DNA bacteriophages. Protein-lipid interactions have been shown to influence membrane protein topology as well as its function. This work investigated the interactions of pinholin with the phospholipid bilayer while in active and inactive confirmations to elucidate the different interactions the two forms have with the bilayer. Pinholin incorporated into deuterated DMPC-d54 lipid bilayers, along with 31P and 2H solid state NMR (SS-NMR) spectroscopy were used to probe the protein-lipid interactions with the phosphorus head group at the surface of the bilayer while interactions with the 2H nuclei were used to study the hydrophobic core. A comparison of the 31P chemical shift anisotropy (CSA) values of the active S2168 pinholin and inactive S21IRS pinholin indicated stronger head group interactions for the pinholin in its active form when compared to that of the inactive form supporting the model of a partially externalized peripheral transmembrane domain (TMD) of the active S2168 instead of complete externalized TMD1 as suggested by Ahammad et al. JPC B 2019. The 2H quadrupolar splitting analysis showed a decrease in spectral width for both forms of the pinholin when compared to the empty bilayers at all temperatures. In this case the decrease in the spectral width of the inactive S21IRS form of the pinholin showed stronger interactions with the acyl chains of the bilayer. The presence of the inactive form's additional TMD within the membrane was supported by the loss of peak resolution observed in the 2H NMR spectra.


Asunto(s)
Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Fosfolípidos/química , Secuencia de Aminoácidos , Deuterio/química , Membrana Dobles de Lípidos/efectos de la radiación , Fosfolípidos/efectos de la radiación
20.
J Phys Chem B ; 124(12): 2331-2342, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32130007

RESUMEN

Membrane proteins are responsible for conducting essential biological functions that are necessary for the survival of living organisms. In spite of their physiological importance, limited structural information is currently available as a result of challenges in applying biophysical techniques for studying these protein systems. Electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study the structural and dynamic properties of membrane proteins. However, the application of EPR spectroscopy to membrane proteins in a native membrane-bound state is extremely challenging due to the complexity observed in inhomogeneity sample preparation and the dynamic motion of the spin label. Detergent micelles are very popular membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is important to test whether the protein structure in a micelle environment is the same as that of its membrane-bound state. Lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have been introduced as a potentially good membrane-mimetic system for structural studies of membrane proteins. Recently, we reported on the EPR characterization of the KCNE1 membrane protein having a single transmembrane incorporated into lipodisq nanoparticles. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the more complicated membrane protein system human KCNQ1 voltage sensing domain (Q1-VSD) having four transmembrane helices using site-directed spin-labeling EPR spectroscopy. Characterization of spin-labeled Q1-VSD incorporated into lipodisq nanoparticles was carried out using CW-EPR spectral line shape analysis and pulsed EPR double-electron electron resonance (DEER) measurements. The CW-EPR spectra indicate an increase in spectral line broadening with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated a superior quality of distance measurement with an increase in the phase memory time (Tm) values upon incorporation of the sample into lipodisq nanoparticles when compared to proteoliposomes. These results are consistent with the solution NMR structural studies on the Q1-VSD. This study will be beneficial for researchers working on investigating the structural and dynamic properties of more complicated membrane protein systems using lipodisq nanoparticles.


Asunto(s)
Canal de Potasio KCNQ1 , Nanopartículas , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Proteínas de la Membrana/genética , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA