Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chromatogr Sci ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706309

RESUMEN

Ayurveda emphasizes the propagation of nature in maintaining health. In the present scenario, we have seen the faith of people in herbal drugs during the Covid 19 outbreak. The raises in the number of peoples have been using herbal drugs to boost immunity against infectious diseases shows the popularity of this ancient system of medicine. The standardization of Ayush Kvatha Churna (AKC), work set out to establish a straightforward, accurate and sensitive HPTLC method for the identification and quantification of marker compounds. The Rosmarinic acid, trans-Cinnamaldehyde and Piperine were used for the estimation of markers in Ayush Kvatha Churna by using HPTLC with a solvent system, consisting of Toluene: Ethyl acetate: Ethyl alcohol: Formic acid (5.6:2.4:2: 0.3 v/v/v/v). The Rf value 0.33 for Rosmarinic Acid, 0.69 for Piperine and 0.77 for trans-Cinnamaldehyde was observed and it is exactly complying with the corresponding bands in Ayush Kvatha Churna. The technique has been effectively verified and validated, enabling it to be used for the standardization or quantitative analysis of Rosmarinic acid, trans-Cinnamaldehyde and piperine in Ayush Kvatha Churna.

2.
Science ; 383(6690): 1484-1492, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547260

RESUMEN

Cellular purines, particularly adenosine 5'-triphosphate (ATP), fuel many metabolic reactions, but less is known about the direct effects of pyrimidines on cellular metabolism. We found that pyrimidines, but not purines, maintain pyruvate oxidation and the tricarboxylic citric acid (TCA) cycle by regulating pyruvate dehydrogenase (PDH) activity. PDH activity requires sufficient substrates and cofactors, including thiamine pyrophosphate (TPP). Depletion of cellular pyrimidines decreased TPP synthesis, a reaction carried out by TPP kinase 1 (TPK1), which reportedly uses ATP to phosphorylate thiamine (vitamin B1). We found that uridine 5'-triphosphate (UTP) acts as the preferred substrate for TPK1, enabling cellular TPP synthesis, PDH activity, TCA-cycle activity, lipogenesis, and adipocyte differentiation. Thus, UTP is required for vitamin B1 utilization to maintain pyruvate oxidation and lipogenesis.


Asunto(s)
Ciclo del Ácido Cítrico , Lipogénesis , Pirimidinas , Complejo Piruvato Deshidrogenasa , Piruvatos , Adenosina Trifosfato/metabolismo , Pirimidinas/metabolismo , Piruvatos/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo , Uridina Trifosfato/metabolismo , Oxidación-Reducción , Proteínas Quinasas/metabolismo , Humanos , Células HeLa , Complejo Piruvato Deshidrogenasa/metabolismo
4.
Mol Cell ; 83(1): 6-8, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608671

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) senses cellular leucine levels through the GATOR1/2-Rag axis. Jiang et al. show that the Ring domains of GATOR2 subunits maintain the integrity of the complex and promote ubiquitination and inhibition of GATOR1, thereby leading to mTORC1 activation.


Asunto(s)
Complejos Multiproteicos , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Serina-Treonina Quinasas TOR/genética , Complejos Multiproteicos/genética , Leucina , Lisosomas
5.
Nat Commun ; 13(1): 2698, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577785

RESUMEN

Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration.


Asunto(s)
Nucleótidos de Purina , Serina , Carbono , Movimiento Celular , Purinas , Serina/metabolismo
6.
J Biol Chem ; 297(4): 101247, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34582889

RESUMEN

The zinc finger transcription factor Mxr1p regulates the transcription of genes involved in methanol, acetate, and amino acid metabolism of the industrial yeast Pichia pastoris (a.k.a. Komagataella phaffii) by binding to Mxr1p response elements in their promoters. Here, we demonstrate that Mxr1p is a key regulator of ethanol metabolism as well. Using transcriptomic analysis, we identified target genes of Mxr1p that mediate ethanol metabolism, including ALD6-1 encoding an aldehyde dehydrogenase. ALD6-1 is essential for ethanol metabolism, and the ALD6-1 promoter harbors three Mxr1p response elements to which Mxr1p binds in vitro and activates transcription in vivo. We show that a nine-amino acid transactivation domain located between amino acids 365 and 373 of Mxr1p is essential for the transactivation of ALD6-1 to facilitate ethanol metabolism. Mxr1N250, containing the N-terminal 250 amino acids of Mxr1p, localized to the nucleus of cells metabolizing ethanol dependent on basic amino acid residues present between amino acids 75 and 85. While the N-terminal 400 amino acids of Mxr1p are sufficient for the activation of target genes essential for ethanol metabolism, the region between amino acids 401 and 1155 was also required for the regulation of genes essential for methanol metabolism. Finally, we identified several novel genes whose expression is differentially regulated by Mxr1p during methanol metabolism by DNA microarray. This study demonstrates that Mxr1p is a key regulator of ethanol metabolism and provides new insights into the mechanism by which Mxr1p functions as a global regulator of multiple metabolic pathways of P. pastoris.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomycetales/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Proteínas Fúngicas/genética , Saccharomycetales/genética , Factores de Transcripción/genética , Dedos de Zinc
7.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756106

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
8.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571115

RESUMEN

Ubiquitin protein ligase E3 component N-recognin 7 (UBR7) is the most divergent member of UBR box-containing E3 ubiquitin ligases/recognins that mediate the proteasomal degradation of its substrates through the N-end rule. Here, we used a proteomic approach and found phosphoribosyl pyrophosphate synthetases (PRPSs), the essential enzymes for nucleotide biosynthesis, as strong interacting partners of UBR7. UBR7 stabilizes PRPS catalytic subunits by mediating the polyubiquitination-directed degradation of PRPS-associated protein (PRPSAP), the negative regulator of PRPS. Loss of UBR7 leads to nucleotide biosynthesis defects. We define UBR7 as a transcriptional target of NOTCH1 and show that UBR7 is overexpressed in NOTCH1-driven T cell acute lymphoblastic leukemia (T-ALL). Impaired nucleotide biosynthesis caused by UBR7 depletion was concomitant with the attenuated cell proliferation and oncogenic potential of T-ALL. Collectively, these results establish UBR7 as a critical regulator of nucleotide metabolism through the regulation of the PRPS enzyme complex and uncover a metabolic vulnerability in NOTCH1-driven T-ALL.


Asunto(s)
Nucleótidos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch1 , Ubiquitina-Proteína Ligasas , Humanos , Nucleótidos/biosíntesis , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteómica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linfocitos T/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Mol Cell ; 78(6): 1178-1191.e6, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32485148

RESUMEN

The RAS-ERK/MAPK (RAS-extracellular signal-regulated kinase/mitogen-activated protein kinase) pathway integrates growth-promoting signals to stimulate cell growth and proliferation, at least in part, through alterations in metabolic gene expression. However, examples of direct and rapid regulation of the metabolic pathways by the RAS-ERK pathway remain elusive. We find that physiological and oncogenic ERK signaling activation leads to acute metabolic flux stimulation through the de novo purine synthesis pathway, thereby increasing building block availability for RNA and DNA synthesis, which is required for cell growth and proliferation. We demonstrate that ERK2, but not ERK1, phosphorylates the purine synthesis enzyme PFAS (phosphoribosylformylglycinamidine synthase) at T619 in cells to stimulate de novo purine synthesis. The expression of nonphosphorylatable PFAS (T619A) decreases purine synthesis, RAS-dependent cancer cell-colony formation, and tumor growth. Thus, ERK2-mediated PFAS phosphorylation facilitates the increase in nucleic acid synthesis required for anabolic cell growth and proliferation.


Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Purinas/biosíntesis , Células A549 , Animales , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Fosforilación , Purinas/metabolismo , Transducción de Señal/fisiología , Proteínas ras/metabolismo
10.
Cancers (Basel) ; 11(5)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108873

RESUMEN

Cancer cells exhibit a dynamic metabolic landscape and require a sufficient supply of nucleotides and other macromolecules to grow and proliferate. To meet the metabolic requirements for cell growth, cancer cells must stimulate de novo nucleotide synthesis to obtain adequate nucleotide pools to support nucleic acid and protein synthesis along with energy preservation, signaling activity, glycosylation mechanisms, and cytoskeletal function. Both oncogenes and tumor suppressors have recently been identified as key molecular determinants for de novo nucleotide synthesis that contribute to the maintenance of homeostasis and the proliferation of cancer cells. Inactivation of tumor suppressors such as TP53 and LKB1 and hyperactivation of the mTOR pathway and of oncogenes such as MYC, RAS, and AKT have been shown to fuel nucleotide synthesis in tumor cells. The molecular mechanisms by which these signaling hubs influence metabolism, especially the metabolic pathways for nucleotide synthesis, continue to emerge. Here, we focus on the current understanding of the molecular mechanisms by which oncogenes and tumor suppressors modulate nucleotide synthesis in cancer cells and, based on these insights, discuss potential strategies to target cancer cell proliferation.

11.
J Biol Chem ; 292(36): 14730-14746, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28701466

RESUMEN

Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of S-adenosylmethionine. Here, we report that MS is localized to the nucleus of Pichia pastoris and Candida albicans but is cytoplasmic in Saccharomyces cerevisiae The P. pastoris strain carrying a deletion of the MET6 gene encoding MS (Ppmet6) exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of P. pastoris MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. In silico analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Ppmet6 Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Ppmet6 Thus, nuclear localization is essential for the stability and function of MS in P. pastoris. We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as P. pastoris and C. albicans, and it may have novel moonlighting functions in the nucleus.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/análisis , Candida albicans/enzimología , Núcleo Celular/enzimología , Citoplasma/enzimología , Pichia/enzimología , Saccharomyces cerevisiae/enzimología , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Candida albicans/citología , Metionina/metabolismo , Microscopía Fluorescente , Modelos Moleculares , Pichia/citología , Transporte de Proteínas , Saccharomyces cerevisiae/citología
12.
J Biol Chem ; 291(39): 20588-601, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27519409

RESUMEN

Unlike Saccharomyces cerevisiae, the methylotrophic yeast Pichia pastoris can assimilate amino acids as the sole source of carbon and nitrogen. It can grow in media containing yeast extract and peptone (YP), yeast nitrogen base (YNB) + glutamate (YNB + Glu), or YNB + aspartate (YNB + Asp). Methanol expression regulator 1 (Mxr1p), a zinc finger transcription factor, is essential for growth in these media. Mxr1p regulates the expression of several genes involved in the utilization of amino acids as the sole source of carbon and nitrogen. These include the following: (i) GDH2 encoding NAD-dependent glutamate dehydrogenase; (ii) AAT1 and AAT2 encoding mitochondrial and cytosolic aspartate aminotransferases, respectively; (iii) MDH1 and MDH2 encoding mitochondrial and cytosolic malate dehydrogenases, respectively; and (iv) GLN1 encoding glutamine synthetase. Synthesis of all these enzymes is regulated by Mxr1p at the level of transcription except GDH2, whose synthesis is regulated at the level of translation. Mxr1p activates the transcription of AAT1, AAT2, and GLN1 in cells cultured in YP as well as in YNB + Glu media, whereas transcription of MDH1 and MDH2 is activated in cells cultured in YNB + Glu but not in YP. A truncated Mxr1p composed of 400 N-terminal amino acids activates transcription of target genes in cells cultured in YP but not in YNB + Glu. Mxr1p binds to Mxr1p response elements present in the promoters of AAT2, MDH2, and GLN1 We conclude that Mxr1p is essential for utilization of amino acids as the sole source of carbon and nitrogen, and it is a global regulator of multiple metabolic pathways in P. pastoris.


Asunto(s)
Aminoácidos/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Pichia/metabolismo , Elementos de Respuesta/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Aminoácidos/genética , Aspartato Aminotransferasas/biosíntesis , Aspartato Aminotransferasas/genética , Glutamato Deshidrogenasa/biosíntesis , Glutamato Deshidrogenasa/genética , Glutamato-Amoníaco Ligasa/biosíntesis , Glutamato-Amoníaco Ligasa/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Pichia/genética , Factores de Transcripción/genética , Dedos de Zinc
13.
J Biol Chem ; 291(7): 3648-57, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26663080

RESUMEN

Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.


Asunto(s)
Acetatos/metabolismo , Coenzima A Ligasas/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Factor 1 de Elongación Peptídica/metabolismo , Pichia/metabolismo , Procesamiento Proteico-Postraduccional , Transporte Activo de Núcleo Celular , Sustitución de Aminoácidos , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Proteínas Fúngicas/agonistas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Mutación , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Pichia/citología , Pichia/enzimología , Pichia/crecimiento & desarrollo , Dominios y Motivos de Interacción de Proteínas , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta
14.
Biochem Biophys Res Commun ; 451(1): 158-64, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25088995

RESUMEN

The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris ΔTrm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii.


Asunto(s)
Proteínas Fúngicas/metabolismo , Metanol/metabolismo , Pichia/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Pichia/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA